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Abstract 

Forests are more than an aggregation of trees, demonstrated by constituting habitat for more than 75% 

of the world’s terrestrial biodiversity. Structural richness increases habitat suitability for a major part of 

dwelling species. In the Black Forest National Park diverse mosaic forest structures are supposed to 

supersede large-scale structures under conservation of natural dynamics with considerable effects on 

biodiversity. A comprehensive ecosystem monitoring is planned to document these processes and to 

serve as basis for scientific research, management and stakeholder information. 

This study aims to adapt a stratification of forest structure to local, conifer dominated forests and classify 

the forest strata across the national park by the means of remote sensing. The resulting forest structure 

map should build the basis for a long-term forest structure monitoring. Six forest strata, differentiated 

by tree dimensions and their heterogeneity, and a complementing opening stratum were defined. A high-

density, discrete return LiDAR data set (30 returns/m2) was used for an area-based forest structure 

analysis. A set of LiDAR metrics describing forest structure was calculated for each cell of a gridded 

national park raster of a 20 m x 20 m resolution. For model training and test purpose 86 forest 

observations across the six forested strata were selected. Additional 15 opening plots were located on 

meadows by aerial image analysis. Stratum classification by Random Forests modelling was chosen due 

to its positive results in studies under comparable conditions.  

Random Forests integrated recursive feature elimination reduced the metrics used in the final model to 

13, mainly density and height related predictors, which were partially highly correlated. The 

classification reached an overall OOB accuracy of 81.47% (𝛫𝐻𝐴𝑇 = 0.78) and a test accuracy of 90.00% 

(𝛫𝐻𝐴𝑇 = 0.88). The intra-stratum accuracies varied. Low vegetated strata were almost perfectly 

classified whereas multi-story strata showed moderate accuracies. Stratum membership probability 

analysis confirmed the differences in classification performance but indicated on average good stratum 

identification.  

The study proved that the introduced stratification defined well differentiable forest structure strata. The 

classification revealed basically well strata predictions with respect to accuracy measures and to spatial 

distribution. Reduced accuracies relating to multi-story strata were supposed to result from 

underrepresented field observations. Future acquisition of reference plots is necessary to extend the 

presented classification approach to mixed or deciduous dominated forests. In conclusion, the study 

shows reliable forest strata classification, it provides a comprehensive approach for repeated monitoring 

assessments and offers various aspects for further research activities.
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Zusammenfassung 

Wälder sind mehr als eine Ansammlung von Bäumen. Dies zeigt sich daran, dass Wälder den 

Lebensraum für mehr als 75% der terrestrischen Biodiversität der Erde darstellen. Dabei erhöht 

strukturelle Vielfalt die Lebensraumqualität für viel waldbewohnende Arten. Im Nationalpark 

Schwarzwald wird erwartet, dass mosaikartige Waldstrukturen unter dem Schutz der natürlichen 

Walddynamik vorhandene großflächige Strukturen ablösen, mit Folgen für die Biodiversität. Ein 

umfassendes Ökosystemmonitoring soll diese Prozesse dokumentieren und als Basis für Forschung und 

Management sowie zur Information von Interessengruppen dienen.  

Ziel dieser Studie ist eine Stratifikation der lokalen, koniferen-dominierten Waldstruktur und die 

Klassifikation der Nationalparkfläche gemäß dieser Straten auf Basis von Fernerkundungs- 

Informationen. Eine zusammenfassende Karte soll als Ausgangspunkt für ein langzeitliches Monitoring 

der Waldstruktur dienen. Sechs Waldstraten wurden anhand der Dimension und der Homogenität der 

Bäume unterschieden, ergänzt durch ein Stratum für Offenflächen. Die flächenbasierte Strukturanalyse 

wurde auf Basis eines hoch aufgelösten, diskreten LiDAR-Datensatzes (30 Punkte/m2) durchgeführt. 

Aus den LiDAR-Daten wurden Kennzahlen zur Beschreibung der Waldstruktur für jede Zelle der mit 

einem 20 m x 20 m Raster überzogenen Nationalparkfläche berechnet. Es wurden 86 Beobachtungs-

flächen der Waldstraten ausgewählt, um die Klassifikation zu trainieren und zu testen. 15 zusätzliche 

Offenflächen wurden per Luftbildanalyse auf Wildwiesen verortet. Die Klassifikation erfolgte anhand 

eines Random Forests-Verfahrens, das in vergleichbaren Studien gute Ergebnisse erzielte. 

Eine in Random Forests integrierte rekursive Auswahlroutine reduzierte die Kennzahlen für das 

endgültige Modell auf 13, zumeist dichte- oder höhenbezogene Prädiktoren, die teilweise stark korreliert 

waren. Die Klassifikation erzielte eine OOB-Gesamtgenauigkeit (engl: out-of-bag) von 81.47% 

(𝛫𝐻𝐴𝑇 = 0.78) und auf den Testdaten 90.00% (𝛫𝐻𝐴𝑇 = 0.88). Die Genauigkeiten der einzelnen Straten 

fielen unterschiedlich aus. Niedrig bewachsene Straten wurden nahezu fehlerfrei klassifiziert, während 

mehrschichtige moderate Genauigkeit aufwiesen. Die Auswertung der Stratenzugehörigkeit nach 

Wahrscheinlichkeit bestätigte diese Unterschiede, zeigte aber im Schnitt gute Identifikation der Straten.  

Die Studie konnte belegen, dass die vorgestellte Stratifikation gut differenzierbare Waldstrukturstraten 

einteilt. Die Klassifikation zeigte im Grundsatz gute Vorhersagen sowohl hinsichtlich der Genauigkeit 

als auch der räumlichen Verteilung der Straten. Verringerte Genauigkeiten im Zusammenhang mit den 

mehrschichtigen Straten sind vermutlich auf die zu geringe Anzahl an Beobachtungsflächen zurück zu 

führen. Um die Klassifikation zukünftig auf Misch- und Laubwälder ausdehnen zu können, müssen 

zusätzlich spezifische Beobachtungsflächen aufgenommen werden. Zusammenfassend liefert die Studie 

eine verlässliche Klassifikation der Waldstrukturen, zeigt eine umfassende Vorgehensweise für 

wiederholtes Monitoring auf und bietet vielfältige Ansätze für weitere Forschung 
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1 Introduction 

“To protect natural biodiversity along with its underlying ecological structure and supporting 

environmental processes”, is the primary objective of category II protected areas according to the 

International Union for Conservation of Nature (IUCN; Dudley, 2013, p. 16). In this sense, it is, inter 

alia, part of the guiding principle of national parks in general and of the Black Forest National Park 

(BFNP) in particular (Nationalpark Schwarzwald, 2014). The basic need to conserve biodiversity in 

terms of diversity within species, between species and of ecosystems is almost worldwide accepted, at 

least since the signing of the Convention on Biological Diversity in 1992 (Hooper et al., 2005; 

Secretariat of the Convention on Biological Diversity, 2005). Comprehensive analyses of the interaction 

of biodiversity and human well-being showed multi-dimensional relationships (Mace et al., 2012). In 

conclusion, it is evident that loss of biodiversity will negatively affect global material and immaterial 

wealth from a long-term perspective (Millennium Ecosystem Assessment, 2005). The predictions of the 

Millennium Ecosystem Assessment (2005) show a progressive loss of species and ecosystems in all 

scenarios and across terrestrial, freshwater and marine biomes till 2050. Within the terrestrial biomes 

forested areas are of particular importance: 31% of the global land area is covered by forests (Keenan et 

al., 2015), home of more than 75% of the world’s terrestrial biodiversity (FAO, 2016). Recognising this 

key role of forests, international and national policies intensified their efforts to preserve forest 

ecosystems. This led to an increase of protected forest areas from 7.7% to 16.3% at global scale between 

1990 and 2015 (Morales-Hidalgo et al., 2015). Designations of protected areas constitute a core element 

in conservation efforts with direct effect on biodiversity maintenance as well as indirect impact by rising 

awareness of their benefits (Rands et al., 2010). Abandonment of forest management and protection of 

natural dynamics is expected to foster biodiversity as it is indicated for species richness by Paillet et al. 

(2010). In this context, the German government strives to protect natural forest development in 5% of 

Germany’s wooded area till 2020 to improve diversity in structure and enable forest development 

dynamics, as laid down in the “National Strategy on Biological Diversity” (BMU, 2007) .  

The implementation of protected areas, aiming the conservation of biodiversity, ecological structures, 

and environmental processes creates challenges for planning, management and assessment of 

conservation actions. Therefore, ecological monitoring and evaluation systems gain in importance for 

scientific research as well as for political and societal responsibilities (Stem et al., 2005; Lindenmayer 

and Likens, 2010). Comprehensive monitoring frameworks involve compositional aspects of 

biodiversity at organizational levels from landscapes to ecosystems, from populations down to genes. 

Structural and functional components accompany a broad monitoring system at each of the four different 

levels (Noss, 1990). In forests, structural components are often given high priority in monitoring systems 

as they represent species habitat configurations. Important structural indicators are for example tree age 

diversity, vertical stratification, horizontal composition, and occurrence of deadwood (Berglund et al., 
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2005; Bergen et al., 2009; Paillet et al., 2010). The dynamics of forested ecosystems can be successfully 

monitored when the process is set on a large temporal scale and frequencies that are adapted to change 

processes (Spies and Turner, 1999). This particularly pertains to protected forest areas with natural 

development dynamics where disturbances on different spatial and temporal scales and of various 

severities create or change mosaic forest patterns of diverse structural patches (Pickett and White, 1985; 

Remmert, 1992; Oliver and Larson, 1996; Spies and Turner, 1999; Turner, 2010). 

Forest monitoring in forestry and forest science had been based on manual, on-site measurements 

without alternatives till aerial photography appeared in the 1930’s (Coppin and Bauer, 1996). Still today, 

manual inventory is important but it requires to comply the precepts of efficiency. While respectively 

small areas could be fully inventoried on the ground, the methodology usually changes to sample-based 

procedures with increasing area. These areal estimations originating from systematic samplings are still 

complex, time-consuming and error-prone though (McRoberts and Tomppo, 2007). Therefore, remote 

sensing methods have been tested for and proven their capability to facilitate the acquisition of areal 

forest information since the development of aerial photography (Coppin and Bauer, 1996; Wulder, 1998; 

McRoberts and Tomppo, 2007; Latifi, 2012). A major progress has been achieved by the introduction 

of Light Detection and Ranging (LiDAR) in ecological remote sensing. LiDAR, which is called 

Airborne Laser Scanning (ALS) if operated on an airplane, provides a highly accurate three-dimensional 

(3D) measurement of structures and surfaces (Wulder et al., 2014). ALS is an active remote sensing 

technique based on high frequent emission of laser pulses from an airplane to the ground and recording 

of reflections by an on-board sensor (Figure 1-1 and Figure 1-2). 

The airplane position is precisely controlled by a Global Positioning System (GPS) network of satellites 

and ground stations which is the essential prerequisite for accurate surface scanning (Figure 1-1). The 

exact position of the reflecting object is finally derived from the reflected beam angle, the elapsed time 

between emission and detection, and the speed of the laser light (Vauhkonen et al., 2014). Depending 

on the measurement unit the ALS system records either discrete reflections per laser beam or a 

continuous waveform of the entire backscattered signal (Figure 1-2; Hollhaus et al., 2014). Discrete 

LiDAR systems record reflections with 3D coordinates for each laser pulse. Independent of the 

differentiation between large-footprint (5 – 10 m) and small-footprint (0.1 – 2.0 m) ALS approaches, 

one laser beam typically can lead to multiple echoes by partial reflection in rich vertical forest structures 

(Vauhkonen et al., 2014). The footprint size depends on the divergence of the laser beam and flight 

altitude. Continuous waveform recordings, also called full-waveform ALS, usually are post-processed 

to discrete returns as well. The continuity of the signal enables the derivation of a higher average number 

of returns per beam, and additional information about pulse width and intensity per return (Figure 1-2; 
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Hollhaus et al., 2014). Due to the 3D arrangement of the single returns the result of a LiDAR 

measurement campaign is a 3D return cloud (syn. point cloud) which comprises all reflections. 

 

Figure 1-1 GPS controlled ALS (LiDAR) of forest structure; the bright 

segment symbolises the scanned swath width of one flight strip 

(White, 2013, p. 3). 

Figure 1-2 Illustrated measurement principle of ALS (LiDAR); 

backscattered laser pulse energy is recorded by a sensor unit 

either as discrete returns or as continuous (full) waveform. 
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The crucial advantage of LiDAR over passive optical systems, such as aerial photography and optical 

satellite imagery, is its ability to characterize 3D vegetation structure even if it is dense (Lefsky et al., 

2001; Næsset et al., 2004; Vauhkonen et al., 2014). Recent comparisons of ALS and return clouds of 

stereo images from photogrammetric matching confirmed the leadership of LiDAR at least in forested 

ecosystems (Gobakken et al., 2014; Pitt et al., 2014). This has been the reason for the fast development 

and the ongoing large popularity of LiDAR measurements in operational forestry (Næsset et al., 2004; 

Hyyppä et al., 2012), forest science (Shugart et al., 2010), and species ecology as well as habitat 

modelling (Graf et al., 2009; Müller et al., 2010; Zellweger et al., 2013). In all fields of application 

small-footprint LiDAR systems are mostly applied, recording either discrete or full-waveform data 

(Vauhkonen et al., 2014; Sumnall et al., 2016). The return clouds can be analysed by two distinct 

approaches. At first, area-based methods are used to characterize the ground surface of a determined 

area and the aggregated vegetation above. Besides directly derived LiDAR return cloud metrics per area 

(e.g. maximum height, mean canopy height), regression and classification models are typically 

conducted based on adequate metrics (Vauhkonen et al., 2014). Regression models usually serve to 

estimate vegetation parameters (e.g. forest stem volume and biomass; Hyyppä et al., 2004; Zolkos et al., 

2013) while classification approaches aim to identify pre-defined structures (e.g. habitat and forest stand 

types; Vierling et al., 2008; Falkowski et al., 2009). Secondly, individual tree approaches facilitate tree-

level inventories (Reitberger et al., 2009). They require higher return densities of at least 10 returns/m2  

(Yao et al., 2014) to build the basis for solely remotely sensed forest inventories on single tree scale 

(Heurich et al., 2015). 

Established in January 2014, the Black Forest National Park (BFNP) comprises mainly montane and 

sub-montane forest ecosystems as well as heathlands at the ridges of the mountain range. The national 

park area hosted more than 2,500 identified species according to local inventories and incidental 

identifications till October 2016. This was approx. 17% of the species richness of the federal state of 

Baden-Württemberg (Germany). As a result of a systematic, long-term biodiversity monitoring system 

that started in 2017, the recorded species number is expected to further increase (Buse et al., 2016). In 

addition, the biodiversity monitoring of the BFNP is going to be accompanied by a comprehensive 

monitoring of forest structure and dynamic change processes (Gärtner et al., 2016). This is of high 

importance as natural dynamic processes are expected to considerably change the vegetation structure 

in the BFNP. A large part of present structures of forested areas are predominantly shaped by a long 

sylvicultural management tradition (PricewaterhouseCoopers & ö:konzept, 2013; Rösch, 2015). For this 

reason, the administration of the BFNP commissioned an ALS campaign to document the vegetation 

structure at the initial stage of the national park history for 2015. The flight area covered the entire BFNP 

and a spacious buffer zone around its border. The on-board LiDAR measurement unit produced high-

density, full-waveform data which was processed to discrete return data (MILAN Geoservice GmbH, 

2015). 
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2 Objectives 

Today, ecological monitoring needs to measure up to various political and societal interests. Reports 

must be taken with intensifying specification to a rising number of different stakeholders. The growing 

complexity and the simultaneous constraint of efficiency is a major challenge to administrations of 

protected areas (Lindenmayer and Likens, 2010). In this environment, the BFNP is currently building 

up its detailed and comprehensive biodiversity and ecosystem monitoring (Buse et al., 2016; Gärtner et 

al., 2016). This study generally aims to classify and map forest structure stages from discrete LiDAR 

data, as a substantial part of the BFNP’s ecological monitoring system.  

The study area was limited to conifer dominated areas based on forest management data from 2014. The 

definition of structure stages follows the idea of stratifying coniferous forest ecosystems along 

ecologically relevant structural features such as tree diameters, canopy layering, canopy closure and 

height parameters (O'Hara et al., 1996; Oliver and Larson, 1996; Falkowski et al., 2009). Six forested 

strata and one open stratum have been defined. This stratification represents structures adapted to the 

regional forest characteristics in consideration of potential changes under protection of natural 

dynamics. The strata descriptions and names have been deliberately defined without references to 

specific forestry or forest succession concepts or terminologies. They solely emphasize structural 

aspects.  

An area-based classification approach was used due to its superior suitability in characterising forest 

structures on patch scales. A wide range of LiDAR metrics were calculated from rasterized return clouds 

as potential predictors for a Random Forests (RF) classification (Breiman, 2001). By similar means 

Falkowski et al. (2009) did achieve a high accuracy classification of a structurally diverse, conifer 

dominated forest in Idaho, USA. Representative observation plots for training and test purposes had 

been inventoried during a comprehensive field campaign in 2016. Visual on-site assessment of the forest 

structure in addition with detailed forest inventories on the plots led to their stratum assignment.  

On this basis, the major focus of this study can be differentiated into three detailed objectives as follows: 

(1) Establishment of a forest structure stratification scheme covering regional 

characteristics and integrating expected structural developments. 

(2) Identification of and limitation to the most important forest structure predictors 

achieving a highly parsimonious classification model. 

(3) Accurate classification of forest structure strata solely by ALS as basis for a future 

forest structure monitoring system in the BFNP. 
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3 Material and methods 

3.1 Study area 

The Black Forest National Park is located at the northern part of the Black Forest mountain range in the 

South-West of Germany (Figure 3-1). It was founded by the state parliament of Baden-Württemberg 

according to the IUCN category II criteria in January 2014 (Landtag von Baden-Württemberg, 2013). 

The park has an area of 10,062 ha divided into two parts of which the national park region Hoher 

Ochsenkopf/Plättig (2,447 ha) lies to the north of the region Ruhestein (7,615 ha). It comprises mainly 

higher elevations between 472 to 1151 m above sea level (Figure 3-1). The protected area covers approx. 

1.7% of the entire Black Forest mountain range (PricewaterhouseCoopers & ö:konzept, 2013). 

Figure 3-1 Location of the BFNP in Baden-Württemberg, Germany (1); Two-part area of the BFNP at higher altitudes in 

the north of the Black Forest mountain range (2); Training and test plot distribution (3) 
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The Black Forest mountain range is geologically part of the central crystalline Moldanubian zone of the 

European Variscan belt (Echtler and Chauvet, 1991-1992). In the pre-variscan era (approx. 

900 Ma – 420 Ma) huge sediment series of greywacke sandstones, pelite mudstones and vulcanites 

deposited which were metamorphologically transformed to various gneiss types during the Assyntic 

orogeny ending approx. 500 Ma ago (Schöttle, 2005). Between 500 Ma and 450 Ma the gneisses were 

partially transformed to anatexites by re-melting (Schöttle, 2005). During the Variscan orogeny (approx. 

420 Ma – 300 Ma) magmatic activity led to the formation of extensive granite stocks of different 

composition (Echtler and Chauvet, 1991-1992). The crystalline basement of the Black Forest consists 

of these gneisses and granites (Schöttle, 2005). The basement was once covered by Mesozoic 

sedimentary rocks. But ever since the tectonic uplift of the Black Forest and the Vosges started in the 

Upper Cretaceous period (approx. 100 Ma) the erosion process scoured off these sedimentary rock 

formations. At present, only the Lower Triassic sandstone formation of Buntsandstein overlies 

regionally the crystalline basement in the northern part of the Black Forest (Schöttle, 2005). In the centre 

and the south of the Black Forest, where the overlying rock formations were completely eroded, gneisses 

and granites form the present bedrock. The National Park is mainly located on the remaining 

Buntsandstein formations. Granites build only locally the underlying bedrock at lower altitudes. Limited 

to the valley of the Rotmurg a narrow area at the bottom of the valley shows anatexite bedrock (Schöttle, 

2005). The recent geomorphology of the Black Forest has essentially been formed during the Pleistocene 

ice ages. Especially the Riss (300 Ka – 130 Ka) and Wurm (115 Ka – 10 Ka) glaciations covered largely 

the south of the Black Forest as well as north and east oriented slopes of the higher ranges in the centre 

and north (Schöttle, 2005).  

The soils of the southern Black Forest are strongly dominated by brown soils (WRB soil group: 

Cambisols; FAO, 2014). To the north, the occurrence of brown soils decreases while the area covered 

by podsols (WRB soil group: Podzols; FAO, 2014) and stagnogleys (WRB soil group: Stagnosols; FAO, 

2014) increases. Sparsely dispersed moors (WRB soil group: Histosols; FAO, 2014) are locally 

occurring at specific, glacially formed structures (Landesamt für Geologie, Rohstoffe und Bergbau, 

2016). The soils in the National Park are mainly podsol and stagnogley. Brown soil can locally be found 

at the western boundary of the park as well as in valleys (Landesamt für Geologie, Rohstoffe und 

Bergbau, 2016). 

The climate of the Black Forest is considerably influenced by west cyclonic atmospheric conditions 

transporting maritime, humid air from the Atlantic over France to the Rhine valley where the humidity 

might increase additionally (Schönwiese, 2008). Due to the north-south orientation of the Black Forest 

the air gets lifted and intensive orographic rainfall is frequently induced at the western windward slopes 

of the mountain range. This leads to mean annual precipitation rates of up to 2200 mm a-1. After passing 

the ridge the mean annual precipitation declines considerably at the leeward slopes. The highest 

precipitation rates can be found at higher altitudes in the northern part of the Black Forest (Deutscher 

Wetterdienst, 2017). This maximum, at the orographically lower northern Black Forest, results from the 
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absence of higher elevations lifting the westerly streams on their way over France. Further south, the 

Vosges lift up the streaming air before it reaches the southern Black Forest reducing the precipitation 

there (Gebhardt, 2008). Regarding the climate zone the annual temperature ranges are basically 

temperate. Due to the higher altitudes of the mountain range, the temperature is colder than the average 

temperature of Baden-Württemberg. The highest peak of the Black Forest is the Feldberg (1493 m a.s.l.) 

with a 30-year mean monthly temperature between -3°C and +12°C (1981 – 2010) and a mean annual 

temperature of 3,9°C during the same period. The mean monthly temperature of Baden Württemberg 

shows a minimum of 0°C and a maximum of 18°C with a mean annual temperature of 8.7°C (Deutscher 

Wetterdienst, 2017). The 30-year mean annual temperature of the BFNP (1981 – 2010) shows values 

between 5.6 and 8.1 °C and the respective mean annual precipitation ranges from 1700 to 2200 mm a-1  

(Deutscher Wetterdienst, 2017). 

The German Federal Agency for Nature Conservation describes the priority protected habitats of the 

BFNP as montane mixed forests of beech, fir, and spruce as well as heathlands (Bundesamt für 

Naturschutz, 2016). Focussing on forested areas Norway spruce (Picea abies (L.) H. KARST.) is 

extensively distributed with a share of 70% of the tree species composition at the region Ruhestein and 

60% at Hoher Ochsenkopf/Plättig (Figure 3-1). Furthermore, the composition of the Ruhestein region 

comprises 11% silver fir (Abies alba MILL.), 4% beech (Fagus sylvatica L.) and 4% Scots pine (Pinus 

sylvestris L.). At Hoher Ochsenkopf/Plättig the percentages of silver fir (18%), beech (7%) and Scots 

pine (11%) are considerably higher than in the southern part (PricewaterhouseCoopers & ö:konzept, 

2013). The remaining proportions are mainly divided among Douglas fir (Pseudotsuga menziesii 

(MIRBEL) FRANCO), Japanese larch (Larix kaempferi (LAMB.) CARRIÈRE) and European larch (Larix 

decidua MILL.) with respect to conifers. Less represented broadleaf tree species are sycamore maple 

(Acer pseudoplatanus L.), mountain ash (Sorbus aucuparia L.), birch (Betula pendula ROTH) and oak 

(Quercus robur L. and Quercus petraea (MATTUSCHKA) LIEBL.). Considering the mixing of Norway 

spruce with silver fir, beech and Scots pine the share of the forested area with at least 20% of the latter 

three species is almost 80% at Hoher Ochsenkopf/Plättig and 41% at Ruhestein (Pricewaterhouse 

Coopers & ö:konzept, 2013). However, due to minor modifications of the boundary line in comparison 

between the expert report (PricewaterhouseCoopers & ö:konzept, 2013) and the finally designated area 

the figures may vary in detail. Despite these small uncertainties, the dominance of coniferous tree 

species, especially of Norway spruce is indicated across large parts of the study area. The current tree 

species composition as well as the predominant structure of the forests result from the long tradition of 

forest management in the northern Black Forest (Rösch, 2015). The protective forest ‘Wilder See’ 

appears as a notable contrast in structure. It has been removed from human usage since 1911 and got 

extended from 86 ha to 150 ha in 1998 (Schlund, 2003). In addition, disturbances like windthrow, bark 

beetle infestation and snow-break created structurally rich parts on different scales across the area of the 

national park (Nationalpark Schwarzwald, 2016). 
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The study site and subsequently the forest structure classification was limited to conifer dominated areas, 

openings, and gaps, due to the under-representation of equally mixed and deciduous dominated forest 

stands (see chapter 3.7.9). This restriction was necessary because a sufficient number of training 

observations in deciduous dominated stands could not have been achieved. 

3.2 Forest structure stratification scheme 

In order to monitor the natural, long-term development of forest structures in the BFNP a stratification 

scheme of six forest strata has been created, complemented by a non-forested open stratum following 

the experiences and recommendations of O'Hara et al. (1996) and Falkowski et al. (2009). The 

stratification numbers and names were as follows: 

(1) Opening 

(2) Gap 

(3) Thicket 

(4) Low- to mid-dimensional multi-story 

(5) Mid-dimensional single-story 

(6) Mid- to high-dimensional single-story with regeneration 

(7) Multi-dimensional multi-story 

These strata describe discrete development stages in a dynamic system but not the processes creating 

forest structures itself (Oliver and Larson, 1996). Thus, their naming has been derived from spatial 

characteristics, tree-dimensions, and vertical configuration. Terminology influenced by succession 

based concepts (O'Hara et al., 1996; Scherzinger, 1997) or by age class schemes of forest management 

systems (Gadow, 2005) has been avoided to emphasize structural attributes. Sequential order of the 

strata cannot be assumed in general, because some of the strata might develop out of various precursor 

stages and disturbances may break up any sequences (Foster et al., 1998). 

On the one hand, the seven strata were specified to comprise a broad range of the recent forest structures 

as well as the potential developments under protection of natural processes. On the other hand, they 

should enable a differentiation by a classification algorithm, which required recognisable boundaries 

between the strata for remote sensing data analysis (Foody, 1999). The proposed seven stratum scheme 

combines these aspects while being aware that transition structures occur that either connect the discrete 

strata or could build up new strata in future. Considering that natural structures within artificially 

determined spatial units meet rarely the ideal of a stratum (Foody, 1999), the strata specifications 

consisted of various aspects (Table 3-1). The basic framework for stratum identification was set by a 

combination of verbal description and reference values for the main tree height range and the main 

diameter at breast height (DBH) range. Based on these criteria the stratum assignment was made in the 

field (see chapter 3.7.2). Forest structure silhouettes complemented the technical descriptions with 
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visual impressions of the strata 2 to 7 (Figure 3-2). A silhouette for openings is not provided, as this 

stratum was introduced to represent meadows or low vegetated areas (< 1 m).  

  

Stratum 7 Stratum 6 

Stratum 5 Stratum 4 

Stratum 3 Stratum 2 

5 

1 2 

4 3 

6 

Figure 3-2 Forest structure silhouettes; gap (1), thicket (2), low- to mid-dimensional multi-story (3), mid-dimensional single-

story (4), mid- to high-dimensional single-story with regeneration (5), multi-dimensional multi-story (6) 
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Table 3-1 Forest structure stratification adapted from O'Hara et al. (1996) and Falkowski et al. (2009) 
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3.3 Spatial resolution 

The foundation of the BFNP induced a conversion in forest management from profit-oriented cultivation 

to widely uninfluenced protection of natural processes (Landtag von Baden-Württemberg, 2013). 

Consequently, it was and is to be expected that disturbances on different scales, from stand replacing to 

fine-scale gap dynamics, will force a development towards mosaic forest patterns (Scherzinger, 1997; 

Brumelis et al., 2011). Detailed documentation of these processes in a forest structure monitoring system 

requires the optimum selection of spatial resolution. In this context, recent technologies offer a broad 

range of fine to coarse scales.  

The finest resolution of LiDAR analysis in forest management and forest science is the individual tree 

approach. It aims on separating single trees within the LiDAR return cloud and subsequent derivation 

of respective tree attributes (Vauhkonen et al., 2014). Promising results in the separation have been 

achieved in the upper and with limitations in the intermediate layer of forest stands (Heurich, 2008; 

Reitberger et al., 2009). Identifying single trees is contrasted by area-based approaches characterizing 

groups of trees or forest stands within determined areas. They have developed to a well proven and 

standardized concept for describing the structure of forested ecosystems (Næsset, 2014; Wulder et al., 

2014). A recent comparison between both methods by Latifi et al. (2015, p. 173) yielded “outstanding 

performance” of the area-based approach whereas the individual tree approach performed poorly in the 

understory and in young, dense forest stands. For this reason, an area-based approach appeared to be 

reasonable for a forest structure monitoring system and has been selected for this study. Shugart et al. 

(2010) distinguished two scale categories regarding the resolution of a rasterized grids. In their review, 

they concluded that resolutions of more than 1.0 ha capture equilibrium states of forest structure by 

reducing the internal variation due to aggregation of different mosaic structures. Conversely, plot sizes 

of 0.1 ha and less should meet extents of natural dynamics and display nonequilibrium states. They 

advised against choosing intermediate resolutions because of difficulties in interpretation (Shugart et 

al., 2010). This is consistent with resolutions of area-based studies which classified forest structure 

(Falkowski et al., 2009) or calculated forest stand parameters (Maltamo et al., 2004; Coops et al., 2007; 

Heurich and Thoma, 2008; Latifi et al., 2016). Their plot dimensions ranged between 10 m x 10 m 

(Latifi et al., 2016) and 30 m x 40 m (Maltamo et al., 2004).  

According to the objective of analysing and documenting natural processes, their dynamic, and influence 

on biotic communities a small-scale grid with a cell size of 20 m x 20 m (400 m2) was chosen for the 

forest structure classification in this study. The eastings and northings of grid intersections given in 

Gauss-Krueger projection (Krüger, 1912; Hooijberg, 1997) were integer multiples of the cell width of 

20 m. Water areas have been excised beforehand as they showed almost exclusively zero returns per 

grid cell. Deciduous dominated areas and special, non-forested sites (e.g. main roads, car parks etc.) 

were excluded afterwards, based on the most recent forest management data (personal communication 

Gärtner, S., Birk, S., & Dreiser, C., 2017).   
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3.4 Field data acquisition 

Before the BFNP was founded in 2014 the forest administration of Baden-Württemberg periodically 

collected statistical data in forest inventories. They took place at fixed points to assess profitability by 

controlling growth and condition of forest stands. The exact field locations were marked with a metal 

stick underneath the ground surface in the centre of each plot. From more than 3,500 points 245 plots 

have been selected as future monitoring plots by stratified sampling across the BFNP. A minimum 

distance to roads and paths of 20 m, diverse environmental conditions, inclusion of the forest structure 

strata from stratum 2 to stratum 7 (Table 3-1) and LiDAR return projections of potential areas were 

considered in the sampling process (Gärtner et al., 2016). Old forest management data and LiDAR return 

visualisation around the respective centre coordinates provided indications for the expectable forest 

structure. The major aim for the sampling process was the selection of a sufficient number of plots per 

stratum under consideration of the stratum area occurrence probability in accordance to the 

recommendations of Stehman and Czaplewski (1998) and Stehman (2009). This should have ensured 

their representativeness for classification purpose as well as in a long-term monitoring system. In 

addition to these 245 monitoring plots 15 sites representing stratum 1, opening, were determined by 

choosing forest glades using digital orthophotos (resolution: 0.4 m). There, artificial plot centres were 

digitally located without subsequent acquisition of field data due to the absence of considerable 

structural elements. The spatial distribution of the 15 plots depended solely on the size of the glades 

which should have ensured a buffer around the plot border of at least ten meters to avoid edge effects of 

the surrounding forest. These 260 plots were established as a basic set of potential observations from 

which the final training and test observations were chosen for the classification (see chapter 3.7.2). 

Between 27 June and 25 November 2016 field data had been acquired on the 245 circular plots of strata 

2 to 7 within a horizontal radius of 11.3 m (401.15 m2). Horizontal distances were used to ensure 

identically projected base areas of each plot. A circular plot design was chosen to facilitate field data 

collection. Consequences of divergent shapes between the observation plots and the rectangular cells of 

the classification grid were considered. Potential edge effects due to the shape discrepancy were 

expected to be small and to be highly overcompensated by accelerated data acquisition and increased 

accuracy of plot position by avoiding orientation of quadratic plots to compass directions in the field 

(Næsset et al., 2013b). The coordinates of the plot centre were measured using a GPS handheld device, 

type Garmin eTrex 30 (Garmin Ltd., Southampton, Hampshire, UK), fixed to a pole at a height of 

approx. two meters perpendicularly above the centre. This allowed measurements by the evaluator at 

any point of the plot without influencing signal transmission to the GPS receiver. During the field 

campaign two GPS handhelds, both of type eTrex 30, were used. To improve accuracy of the centre 

measurement waypoint tracking was activated for at least 20 minutes per plot. The main device (GPS1), 

used at 218 plots, set waypoints every second and GPS2, used at 27 plots, operated in automatic mode. 

Thus, GPSI recorded at least 1,200 entries, whereas GPS2 set approx. 10% of the waypoints in 

comparison to GPS1 within equivalent timespan. The eastings and northings of the waypoints were 
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averaged in the geographic information system QGIS, version Essen 2.14.3 (QGIS Development Team, 

2017) and mean eastings and northings represented the final centre coordinates. The two devices were 

referenced in parallel against a control point of the Landesamt für Geoinformation und Landentwicklung 

in Baden-Württemberg (LGL-BW) located in the town centre of Freudenstadt (Baden-Württemberg). 

By this the GPS measurement accuracy and precision was controlled. The results showed that although 

GPS2 recorded considerably less waypoints its accuracy was higher (Figure 3-3). The deviations of 

GPS1 showed a tendency to North-East and ranged between one and two meters. GPS2 yielded no 

tendency and all waypoint averages were within one meter around the reference point. Regarding 

precision both devices reached similar distributions. With respect to the different environmental 

conditions between the widely open town square and the mostly forested monitoring plots this 

referencing only served as an indicator for measurement quality. Because of the uncertainty about the 

measurement performance under forested conditions neither the setup of GPS1 was adjusted nor its 

results have been corrected.  

 

 

At the study sites four categories of data have been collected (Table 3-2) on a field data form 

(Appendix C). At first basic information about the plot and its surrounding area has been noted. 

Secondly standing trees, independent of their vitality, snags with a minimum height of 2 m, and both 

with a DBH of at least 7 cm were recorded. The horizontal distance between plot centre and central axis 

of each trunk or snag (≤ 11.3 m) was used as the threshold for inclusion in or exclusion from data 

collection. As third category lying dead wood has been recognized if the diameter at half-length was 

12 cm or more representing coarse woody debris (Bässler et al., 2010). In addition, its total length or 

residual length inside the plot border had to be at least 2 m. And, fourth, rootplates divided into three 

diameter classes completed the data collection (Table 3-2).  

Figure 3-3 GPS referencing at LGL-BW control point; Average waypoint coordinates of five reference sessions with 

secondly tracking (secTRK) of GPS1 and automatic tracking (autoTRK) of GPS2 (1); Information board at GPS 

control point (2) 

2 1 
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Table 3-2 Field data category and attribute description 

Data Category Attribute Description 

basic  

information 

general site description specification of slope, exposition, surface soil 

characteristics, dominating and minor tree species, 

ground vegetation, deadwood, recent or old 

disturbances 

mean tree height upper 

third [m] 

average height of 5 randomly chosen trees of the 

upper third of trees 

canopy cover [%] percentage of ground surface covered by tree 

canopy; differentiated in total coverage 

(regeneration included) and percentage covered 

by the uppermost canopy stratum 

number of forest layers number of differentiable canopy layers within the 

plot (between 1 and not differentiable) 

regeneration presence or absence of regeneration below 1 m 

stratum on-site assessment of forest structure stratum 

standing trees  

and snags 

species in case of standing deadwood only if clearly 

identifiable 

vitality distinction between vital, vital with broken top or 

dead 

distance [m] horizontal distance from plot centre to central axis 

of trunk b 

azimuth [°] angle between magnetic North and central axis of 

trunk measured from the plot centre a 

DBH [cm] diameter at breast height b 

crown base height perpendicular distance between ground and lowest 

vital primary branch b 

total height perpendicular height from ground to top of dead 

trees and snags b 

lying dead wood 

species only if clearly identifiable 

distance [m] horizontal distances from plot centre to each of 

both trunk ends 

azimuth [°] angles between magnetic North and each trunk 

end measured from the plot centre a 

rootplates 

distance [m] horizontal distance from plot centre to rootplate 

centre 

azimuth [°] angle between magnetic North and rootplate 

centre measured from the plot centre a 

class dependent upon longest distance (d) of two 

opposite points through the centre of the rootplate 

1: d < 1.5 m 

2: 1.5 m ≤ d < 3 m 

3: 3 m ≤ d 

a subsequently corrected by declination (GFZ Potsdam, 2015); b Kramer and Akça, 2008 
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Various measuring instruments were used for data acquisition. The DBH of standing trees was measured 

with calibrated diameter tapes at a height of 1.3 m assuming a cylindrical shape of the trunk (Kramer 

and Akça, 2008). The tapes were also used for the diameter at half-length of lying dead wood. The 

resolution of diameter measurement was 0.001 m which corresponds to the estimated measurement error 

of manual use of a diameter tape.  

Two Vertex IV ultrasound measurement instruments (Haglöf Sweden, Langsele, Västernorrland, 

Sweden) were used to determine distances and tree heights. Ultrasound technology is especially useful 

in dense structures with high regeneration and thick understory where measuring tapes and laser 

instruments cannot be operated. The resolution of distance values was 0.01 m while height was 

measured in steps of 0.1 m. With respect to distance measurement the Vertex IV operated with an 

accuracy of 1% or less whereas no manufacturer’s information about the height measurement accuracy 

was available (Haglöf Sweden AB, 2014). Considering that height measurement with a Vertex IV 

depends on the trigonometric principle, requiring one distance, at least two angle measurements as well 

as strict position holding of the user, an accumulation of errors up to 5% seemed to be reasonable. This 

assumption was supported by the results of Heurich et al. (2003) comparing ground based height 

measurements using a Vertex III with a LiDAR based canopy height model. As an alternative to the 

Vertex IV a TruPulse 360°R laser range finder (Laser Technology Inc., Centennial, Colorado, USA) 

was applied to measure distances and heights in open forest structures where undisturbed visual contact 

from the plot centre to the individual trees existed. Besides the distance, the azimuth was measured by 

the internal electronic compass of the TruPulse 360°R in some open strata. Its distance resolution was 

0.1 m and the azimuth was measured to 0.1° with a respective accuracy of 0.3 m and 1.0° (Laser 

Technology Inc., 2011). In the case of height measuring, the accuracy of the TruPulse 360°R was 

assumed to be comparable to the Vertex IV due to the similar trigonometric measurement principle and 

user application. At most of the plots two analogue compasses were used to record the azimuth (type 

Suunto KB-14/360R G, Suunto Oy, Vantaa, Finland). Their resolution was 0.5° with an accuracy of 

0.33° (Suunto Oy, 2017).  

All electronic devices were regularly calibrated according to the manufacturer’s recommendations. The 

compasses were compared to each other to avoid malfunction. In the course of data post-processing the 

azimuth values, till then measured against magnetic North, were corrected by the magnetic declination 

which is caused by the dynamic deviation between geographic and magnetic North (Kahmen, 2006). 

For this reason, the German Research Centre for Geosciences (GFZ) offers an online declination 

calculator (GFZ Potsdam, 2015). It calculates the magnetic declination by entering the coordinates 

(easting, northing, and elevation above sea level) and the month of interest. The corrections used in this 

study were referred to the Ruhestein mountain pass (48° 34’ N, 8° 13’ E, 915 m a.s.l.), fairly in the 

centre of the BFNP. The month was chosen according to the respective date of field data acquisition. 

For June 2016 a value of 2.08° was added to the azimuth which changed from 2.10° in July to 2.12° in 

August and September, 2.13° in October, to finally 2.15° in November (GFZ Potsdam, 2015). 
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3.5 LiDAR data acquisition and pre-processing 

Full waveform LiDAR data were acquired by MILAN Geoservice GmbH (Kamenz, Germany) in seven 

flight sessions between 29 April and 6 Mai 2015 (MILAN Geoservice GmbH, 2015). Flight strips were 

flown at an intended speed of 110 knots (203.72 km h-1), an altitude of 1969 feet (600 m) above ground 

level, and a strip overlap of 80%. A RIEGL LMS-Q780 long-range laser scanner served as on-board 

measurement unit (Table 3-3). After the flight campaign MILAN firstly filtered the full waveform raw 

data with respect to quality criteria and secondly extracted discrete returns (MILAN Geoservice GmbH, 

2015). The resulting dataset covered an area of 266 km2 with an average density of discrete returns of 

30.5 returns per square meter. The main information linked to each return was its easting, northing, and 

the height above sea level where the laser was backscattered. Mean standard deviation of height accuracy 

measurements ranged between 0.015 and 0.030 m, referenced at twelve ground control points provided 

by the LGL-BW. The relative position accuracy, measured as standard deviation of GPS position, has 

been given as mostly between 0.02 and 0.15 m (MILAN Geoservice GmbH, 2015). Besides the 

coordinates, number of targets, target number, intensity and signal length were documented for each 

return (MILAN Geoservice GmbH, 2015). The number of targets indicated how many reflections of a 

specific laser beam had been recognized. The target number gave the sequential number of the respective 

reflection within the number of targets. Intensity and signal length characterized the shape of the full 

waveform signal from which the discrete return was derived (Hancock et al., 2015). 

Table 3-3 Performance and parameterization of RIEGL LMS-Q780 laser scanner 

Parameter Performance 

Scan pattern parallel scan lines 

Laser wavelength near infrared 

Technical scan angle range ± 30° = 60° total 

Eff. scan angle range 59.976° total 

Mean swath width 692.485 m 

Eff. laser pulse repetition rate 400.000 kHz 

Eff. scan frequency  151.111 Hz 

Laser wavelength near infrared 

Laser beam divergence 0.25 mrad 

Footprint size 0.15 m2 

Intensity measurement 16-bit 

 

Further pre-processing of discrete return LiDAR data was performed by the Chair of Remote Sensing 

and Landscape Information Systems (FeLis) at the University of Freiburg. A digital terrain model 

(DTM) was calculated which represented the unvegetated ground surface. In addition the file format 
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was changed from ASCII, as used by MILAN (MILAN Geoservice GmbH, 2015), to RWB. RWB is a 

compressing binary file format for laser scanning data which enables accelerated processing and 

visualization. It is the operating format of TreesVis, a LiDAR data processing software developed by 

the FeLis department (Weinacker et al., 2004). 

3.6 LiDAR data analysis 

3.6.1 Normalization and subsets of LiDAR data 

LiDAR return heights, originally stored in height above sea level, were normalized to ground level by 

subtracting perpendicular height values of the underlying DTM in TreesVis. Resulting negative height 

values were manually set to zero where the DTM interpolation overestimated the natural relief. Derived 

from the entire normalized data set (data_0) four subsets were created depending on return height in 

combination with target number. In the data_0_f dataset only the first returns, defined as returns with 

target number 1, were separated. The data_0.5 dataset included returns equal to or above a height of 

0.5 m. Thus, ground returns were excluded. Data_0.5 was interpreted as vegetation returns although 

boulders, hunting constructions, huts, etc. usually exceed 0.5 m. But returns of shrubs and trees 

dominated this dataset by far. A second threshold was at 2 m which separated returns of the tree canopy 

(≥ 2 m) from ground and shrub canopy returns (Næsset, 2002). Finally, data_2_f reduced data_2 to the 

first returns in the tree canopy. 

3.6.2 Forest structure LiDAR metrics 

Metrics characterizing the three-dimensional LiDAR return distribution are essential in an area-based 

approach (Vauhkonen et al., 2014). Therefore, the return datasets were segmented in orthogonal 

columns of which the 400 m2 cells of the BFNP grid (see chapter 3.3) defined the respective bases. Each 

segment was identified by the coordinates of its lower left base corner (i.e. minimum easting and 

minimum northing). Returns lying exactly on or above the western or southern border of a grid cell were 

included into the respective data segment whereas returns precisely on the opposite borderlines were 

excluded. This procedure ensured one-time consideration of each return during the metric calculation 

process. The mean return number per cell was 22,279 while the number of returns per cell ranged 

between 2,568 and 64,010. In contrast, most of the metrics of the field plots were calculated on circular 

plots with a radius of 11.3 m (401.15 m2) around the centre coordinates (see chapter 3.4). Consequently, 

this led to cylindrical columns extracted from the LiDAR data set. The only exception were metrics 

resulting from subdividing each column into voxels of one cubic meter of volume (Lefsky et al., 1999; 

Coops et al., 2007) which required squared base areas (Table A-1). The respective squared bases were 

constructed by using the measured plot centre coordinates as intersection of their diagonals while the 

eastern and western borderlines were oriented to the north. The mean number of returns across the 245 

cylindric field plot data segments was 23,062. The return numbers ranged between a minimum of 12,057 

and a maximum of 40,417.  
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For each data segment 87 height- and density-related LiDAR metrics were calculated to characterize 

forest structure using the statistical software R, version 3.2.2 (R Core Team, 2015). Two separated codes 

calculating LiDAR metrics are attached in Appendix C because of differences in processing regular grid 

cell data and single field plot data (LiDARmetrics_grid.R and LiDARmetrics_traintest.R, Appendix C). 

The metrics based largely on the return height values (i.e. z-coordinates) and only slightly on their 

number of targets and the target number. Most of the metrics have already been tested in studies 

analysing forest structure by area based approaches (Lefsky et al., 1999; Coops et al., 2007; Falkowski 

et al., 2009; Zellweger et al., 2013) or by regression analyses of forest key values (Næsset, 2002; Heurich 

and Thoma, 2008; Latifi et al., 2016). In this study, they were divided into five groups summarized in 

Table A-1 which also assigns the sources of the following metrics in detail (Appendix A). The first 

group contained return counts per area (grid cell, plot and m2) based on different datasets as well as the 

mean (𝑛. 𝑡𝑎𝑟𝑚𝑒𝑎𝑛) and maximum (𝑛. 𝑡𝑎𝑟𝑚𝑎𝑥) of the number of targets. The latter two metrics described 

the average number of reflections per beam and its maximum per data segment respectively. The second 

group characterized the vertical distribution of returns over the continuous height of each data segment 

(Table A-1). These metrics were alternatively derived from the entire returns (data_0), the vegetation 

returns (data_0.5), and the canopy return data (data_2). This mostly led to three variations of each 

parameter. To characterize the vertical distribution basic height metrics (maximum, mean, quadratic 

mean, median, mode, standard deviation and variance), relative metrics (relative median, coefficient of 

variation), and return distribution characteristic measures (skewness and kurtosis) were calculated 

(Table A-1). The calculation of the 99th height percentile of first returns was specifically introduced to 

take into account the sensitivity of the maximum height return to outliers (van Kane et al., 2010). But in 

contrast to van Kane et al. (2010), the recommended height percentile was changed from the 95th to 99th 

of first returns due to an approximately 30-fold higher mean return density in the present dataset  

(0.97 m-2 to 30.5 m-2). This buffer was ought to exclude outliers caused by birds and objects without 

connection to the underlying vegetation (e.g. extended branch ends of neighbouring segments). Thus 

the relative median height (ℎ𝑚𝑒𝑑.𝑟 and ℎ𝑚𝑒𝑑.𝑟.99) was calculated by dividing the median heights of the 

entire dataset, the vegetation, and the canopy dataset (ℎ𝑚𝑒𝑑 , ℎ𝑚𝑒𝑑
𝑣𝑒𝑔

, ℎ𝑚𝑒𝑑
𝑐𝑎𝑛 ) by the maximum height (ℎ𝑚𝑎𝑥) 

and by the 99th percentile of first returns (ℎ𝑝99
𝑓

) as well. 

ℎ𝑚𝑒𝑑.𝑟 =  
ℎ𝑚𝑒𝑑

ℎ𝑚𝑎𝑥
 (1) ℎ𝑚𝑒𝑑.𝑟

𝑣𝑒𝑔
=  

ℎ𝑚𝑒𝑑
𝑣𝑒𝑔

ℎ𝑚𝑎𝑥
 (2) ℎ𝑚𝑒𝑑.𝑟

𝑐𝑎𝑛 =  
ℎ𝑚𝑒𝑑

𝑐𝑎𝑛

ℎ𝑚𝑎𝑥
 (3) 

ℎ𝑚𝑒𝑑.𝑟.99 =  
ℎ𝑚𝑒𝑑

ℎ𝑝99
𝑓  (4) ℎ𝑚𝑒𝑑.𝑟.99𝑓

𝑣𝑒𝑔
=  

ℎ𝑚𝑒𝑑
𝑣𝑒𝑔

ℎ𝑝99
𝑓  (5) ℎ𝑚𝑒𝑑.𝑟.99𝑓

𝑐𝑎𝑛 =  
ℎ𝑚𝑒𝑑

𝑐𝑎𝑛

ℎ𝑝99
𝑓  (6) 
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The coefficient of variation (𝑐𝑜𝑣) has been calculated as the quotient of the standard deviation (𝑠𝑑) of 

heights and the mean height (ℎ𝑚𝑒𝑎𝑛) for the entire return cloud and for the vegetation and canopy return 

cloud separately. 

𝑐𝑜𝑣 =
𝑠𝑑

ℎ𝑚𝑒𝑎𝑛
 (7) 𝑐𝑜𝑣𝑣𝑒𝑔 =

𝑠𝑑𝑣𝑒𝑔

ℎ𝑚𝑒𝑎𝑛
𝑣𝑒𝑔  (8) 𝑐𝑜𝑣𝑐𝑎𝑛 =

𝑠𝑑𝑐𝑎𝑛

ℎ𝑚𝑒𝑎𝑛
𝑐𝑎𝑛  (9) 

Skewness (𝑠𝑘𝑒𝑤) and kurtosis (𝑘𝑢𝑟𝑡) were measured for the distribution of 𝑛 return height values 

ℎ1, … , ℎ𝑛 by using the third and fourth standardized sample moment (Falk et al., 2002; Komsta and 

Novomestky, 2015). The respective formulas were applied on data_0, data_0.5, and data_2 with ℎ𝑚𝑒𝑎𝑛, 

ℎ𝑚𝑒𝑎𝑛
𝑣𝑒𝑔

, and ℎ𝑚𝑒𝑎𝑛
𝑐𝑎𝑛  for ℎ𝑎𝑣𝑔 respectively (Table A-1). 

𝑠𝑘𝑒𝑤 =
1

𝑛
∑ (ℎ𝑖−ℎ𝑎𝑣𝑔)3𝑛

𝑖=1

(
1

𝑛
∑ (ℎ𝑖−ℎ𝑎𝑣𝑔

𝑛
𝑖=1 )2)

3
2

 (10) 

𝑘𝑢𝑟𝑡 =
1

𝑛
∑ (ℎ𝑖−ℎ𝑎𝑣𝑔)4𝑛

𝑖=1

(
1

𝑛
∑ (ℎ𝑖−ℎ𝑎𝑣𝑔

𝑛
𝑖=1 )2)2

 (11) 

The third group consisted of metrics characterising the return distribution within height sections (Table 

A-1). According to Heurich and Thoma (2008) height percentiles between the 10th and the 90th 

(ℎ𝑝10, … , ℎ𝑝90) based on data_0 were calculated. A second segmentation was determined by artificial 

breaks at 0, 1, 2, 10, 20, 30, and 60 m. As recommended by Falkowski et al. (2009), the number of 

returns were counted per height layer (𝑛. ℎ𝑙). The last partitioning was defined by the height quartiles of 

data_0. The standard deviation of the resulting four sections (𝑠𝑑ℎ𝑞) completed the group of sectioned 

vertical distribution metrics (Zellweger et al., 2013). 

Density metrics represent another important group to characterize forest structures from LiDAR data in 

area-based approaches (Vauhkonen et al., 2014). Based on the study of Falkowski et al. (2009) height 

layer densities (𝑑𝑒𝑛𝑠. ℎ𝑙) were calculated by dividing the return numbers within height intervals (𝑛. ℎ𝑙) 

by the number of total returns (𝑛) based on data_0. 

𝑑𝑒𝑛𝑠. ℎ𝑙𝑖 =
𝑛.ℎ𝑙𝑖

𝑛
 with 𝑖 = [0,1], ]1,2], ]2,10], ]10,20], ]20,30], ]30,60] in meter (12) 

Næsset (2002) proposed canopy density parameters (𝑑𝑒𝑛𝑠. 𝑐𝑎𝑛) per height layer limited to first canopy 

returns (data_2_f). They can be interpreted as laser beams fully penetrating different height layers. The 

respective height layers were defined by the 10% height percentiles of first canopy returns (ℎ𝑝𝑖
𝑓
). 

 𝑑𝑒𝑛𝑠. 𝑐𝑎𝑛ℎ𝑝𝑖

𝑓
=

ℎ𝑝𝑖
𝑓

𝑛𝑓   with 𝑖 = 10𝑡ℎ, 20𝑡ℎ, … , 90𝑡ℎ (13) 

The quotient of the total number of first canopy returns (𝑛𝑐𝑎𝑛.𝑓) divided by the number of first returns 

(𝑛𝑓) is interpreted as first return canopy density (𝑑𝑒𝑛𝑠. 𝑐𝑎𝑛𝑓; Table A-1).  
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In contrast, Latifi et al. (2016) and Heurich and Thoma (2008) measured densities by penetration rates. 

For this purpose, they divided return numbers between the ground and the lower boundary of a layer 

(𝑛<𝑙𝑏; with 𝑙𝑏 = 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) by return numbers between the ground and the upper boundary 

(𝑛<𝑢𝑏; with 𝑢𝑏 = 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦). This resulted in a parameter which indicated the share of laser 

beams penetrated through the layer of interest. The difference between their approaches lied in the 

definition of the height layers. While Latifi et al. (2016) defined fixed heights to distinguish between 

the penetration rate through the canopy (𝑝𝑟. 𝑐𝑎𝑛), the shrub layer (𝑝𝑟. 𝑠ℎ𝑟𝑢𝑏) and the understory 

(𝑝𝑟. 𝑢𝑠𝑡), Heurich and Thoma (2008) proposed flexible heights to measure penetration through an upper 

(𝑝𝑟. 𝑢𝑙), intermediate (𝑝𝑟. 𝑖𝑙) and lower layer (𝑝𝑟. 𝑙𝑙). The maximum height was again replaced by the 

99th height percentile (ℎ𝑝99
𝑓

) of first returns to reduce the influence of outliers. Furthermore a 

vegetational penetration rate (𝑝𝑟. 𝑣𝑒𝑔) was calculated by the quotient of returns below a height 0.5 m, 

interpreted as ground returns, and the total number of returns (Heurich and Thoma, 2008). All return 

numbers based on the entire return dataset (data_0) while 𝑛 corresponded to the total number of returns 

per segment. 

𝑝𝑟. 𝑐𝑎𝑛 =
𝑛<2𝑚

𝑛
 (14) 𝑝𝑟. 𝑠ℎ𝑟𝑢𝑏 =

𝑛<0.5𝑚

𝑛<5𝑚
 (15) 𝑝𝑟. 𝑢𝑠𝑡 =  

𝑛<0.5𝑚

𝑛<2𝑚
 (16) 

𝑝𝑟. 𝑢𝑙 =  
𝑛

<0.8 × ℎ𝑝99
𝑓

𝑛
 (17) 𝑝𝑟. 𝑖𝑙 =  

𝑛
<0.5 × ℎ𝑝99

𝑓

𝑛
<0.8 × ℎ𝑝99

𝑓
 (18) 𝑝𝑟. 𝑙𝑙 =  

𝑛<1𝑚

𝑛
<0.5 × ℎ𝑝99

𝑓
 (19) 

𝑝𝑟. 𝑣𝑒𝑔 =
𝑛<0.5𝑚

𝑛
 (20) 

The last group of metrics characterized the vertical and horizontal distribution of returns by subdividing 

the grid cells or squared field plot areas in 1 m x 1 m subplots. Subsequently the return data segments 

were divided in cubic voxels of 1 m3 of volume. The basic approach was introduced by Lefsky et al. 

(1999) with full waveform LiDAR data on 5 m x 5 m subplots. The size was reduced due to higher 

return density in this study. Coops et al. (2007) extended this idea to discrete return data which was the 

basis for the following voxel metrics focussing on the vegetation dataset (data_0.5). First, the voxels 

were distinguished in the categories empty and filled with respect to the occurrence of returns inside. 

The empty voxels were again differentiated in open gaps and closed gaps (Coops et al., 2007). They 

were categorized as open gaps if no filled voxel was located perpendicularly above in the respective 

column of voxels. Open may be interpreted as unshaded. If there was at least one filled voxel above an 

empty voxel, it was assigned to the category closed gap representing a shaded volume. Filled voxels 

were differentiated in the categories euphotic and oligophotic. Both designations refer to the energy 

distribution within a canopy and were suggested by Richards (1984). In the original context, the term 

euphotic referred to the part of the canopy which intercepts the bulk of available light (Richards, 1984) 

and was further interpreted as the uppermost 65% of the canopy (Lefsky et al., 1999). In terms of discrete 

LiDAR returns Coops et al. (2007) used the 35th height percentile of the subplot returns as threshold. 
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The voxel including the 35th percentile return and the filled voxels perpendicularly below were assigned 

to the oligophotic zone while those above were classified as euphotic.  

The result was a four-class classification of open gaps (𝑜𝑔), closed gaps (𝑐𝑔), euphotic zone voxels (𝑒𝑧) 

and oligophotic zone voxels (𝑜𝑧). The metrics derived represent the absolute voxel numbers of each 

class and the respective relative percentage in relation to the total number of voxels (Table A-1). The 

total number was calculated by multiplying 400 voxels per layer by the maximum height (ℎ𝑚𝑎𝑥) rounded 

down to the nearest integer. In this case, maximum height was preferred as the 99th height percentile 

would have led to a disproportional loss of voxels especially in the open gap category. 

3.6.3 Preselection of LiDAR metrics 

The number of metrics had been reduced in a preselection from 87 to 60 considering their general 

suitability for classifying the forest development strata (a in Table A-1). In a first step, all metrics directly 

depending on the flight paths and the resulting overlap per area were excluded. Thus, variables simply 

counting returns over the entire height (e.g. 𝑛, 𝑛𝑓, 𝑛𝑣𝑒𝑔, 𝑛𝑐𝑎𝑛 etc.) or within height layers (𝑛. ℎ𝑙[0,1], 

𝑛. ℎ𝑙]𝑖,𝑗]) have not been further processed. Secondly the 99th height percentile of first returns (ℎ𝑞99
𝑓

) and 

metrics derived from this parameter were preferred in comparison to maximum height metrics to reduce 

sensitivity to outliers (van Kane et al., 2010). This led to an exclusion of the maximum height (ℎ𝑚𝑎𝑥) 

and the relative medians that derived from it (ℎ𝑚𝑒𝑑.𝑟, ℎ𝑚𝑒𝑑.𝑟
𝑣𝑒𝑔

, ℎ𝑚𝑒𝑑.𝑟
𝑐𝑎𝑛 ). Furthermore, metrics solely based 

on the canopy return datasets (data_2 and data_2_f) were excluded because its explanatory power was 

mainly limited to higher strata whereas openings, gaps, and thickets were poorly characterized by returns 

above a height of 2 m. Finally, the number of voxels in the oligophotic zone as well as their share in 

relation to the total number of voxels were excluded as constituting the residuals of the complementing 

three voxel categories.  
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3.7 Random Forests classification of forest strata 

3.7.1 The Random Forests algorithm and settings 

Random Forests (RF) is a nonparametric classification algorithm consisting of a collection of tree-

structured classifiers (Breiman, 2001). Each of the trees is grown by using an independent, identically 

distributed, random vector of predictors and a randomly selected subset of training observations. The 

final vote for a class depends on the most popular vote within the group of multiple trees (Breiman, 

2001). RF has been successfully used for classifying land cover from remote sensing data in general 

(Gislason et al., 2006; Rodriguez-Galiano et al., 2012) and for classification and modelling of forested 

ecosystems from LiDAR data in particular (Falkowski et al., 2009; Martinuzzi et al., 2009; Leutner et 

al., 2012; Latifi et al., 2016). Besides the high classification accuracies (Cutler et al., 2007; Belgiu and 

Drăguţ, 2016), the popularity of RF rests on several advantages compared to other classification 

algorithms which led to its use in this study. 

(i) Independence from distribution of predictor or response variables (Cutler et al., 2007) 

(ii) Robustness against predictor collinearity (Dormann et al., 2013) 

(iii) Low bias due to random predictor selection (Breiman, 2001; Prasad et al., 2006) 

(iv) No overfitting as more trees are added to the forest (Breiman, 2001) 

(v) Integrated method for determining variable importance and estimating classification 

accuracy (Breiman, 2001; Cutler et al., 2007) 

In addition, the RF algorithm is parsimonious with respect to internal settings. Only two variables have 

to be determined. On the one hand, the number of trees (ntree) has to be specified, which implies the 

number of bootstrap samples drawn from the observation data. One sample comprises approximately 

63% of the observations selected for classification tree development (Cutler et al., 2007). The remaining 

observations are called out-of-bag (OOB) and serve as test set for the respective tree classifier. They 

enable the derivation of intrinsic test set error computation (Breiman, 2001; Liaw and Wiener, 2002). 

On the other hand, the size of the randomly chosen subset of predictors at each split (mtry) must be set. 

While growing an unpruned classification tree RF chooses the best splits per node among these mtry 

variables instead of using all predictors. Random sampling of predictors for each tree construction 

process reduces tree correlation (Breiman, 2001; Kuhn and Johnson, 2013).  

Within the framework of RF classification in this study ntree was set to 500 and mtry to the square root of 

the number of input variables according to the most common recommendations (Belgiu and Drăguţ, 

2016). The 260 field plots served as a pool of observations from where the final training and test 

observations were selected (see chapter 3.7.2). Similarly, the preselected 60 LiDAR metrics (a in  

Table A-1) were the potential predictors for classifying forest structures. They were further reduced to 

reach a more parsimonious classification model (see chapter 3.7.7). In preparation, missing values were 
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treated appropriately because the RF algorithm is not able to process those (Kuhn and Johnson, 2013).  

Chapter 3.7.5 gives detailed information about the approaches applied to missing values. 

3.7.2 Selection of training and test observations 

RF is basically a supervised classification algorithm (James et al., 2015). It obtains well-labelled 

observation data for training and test purpose, which is a crucial step towards high quality in 

classification (Congalton and Green, 2009). Although surveying reference data physically in the field is 

considered as the most secure possibility of determining reference areas, it is prone to subjectivity and 

subsequent to errors and inaccuracies (Foody, 2002). Moreover, land cover complexity would cause 

mistakes if the strata are not clearly defined and if the inter-stratum variability is low or the intra-stratum 

variability is high (Pelletier et al., 2017). This stratum label noise may bias the learning process of 

supervised classification algorithms (Nettleton et al., 2010). Even if Pelletier et al. (2017) showed the 

comparable sturdiness of RF to this type of noise, its performance decreased as noise increased. In 

addition, position deviation of field data and remote sensing data may intensify the noise at forest 

structure boundaries (Dicks and Lo, 1990). 

Next to adjusting stratum definition to balance inter- and intra-stratum variability of common forest 

structures in the BFNP (Table 3-1), a four-step selection approach of field plots was implemented to 

minimize stratum label noise. 

(i) Field stratum attribution by identical evaluator 

(ii) Dominance of conifers 

(iii) Homogeneous structural plot environment 

(iv) Reduction to well-labelled observations 

The basis for consistency in stratum labelling was an attribution of the stratum by an identical evaluator 

in the field and in post-evaluation of plot data. Field evaluation basically had a stronger influence on the 

final stratum decision due to the simultaneous, not simplified perception of structural elements. 

Considered in the field, the basic acceptance criterion for stratum 3 to 7 observations was the dominance 

of coniferous trees that was defined as an estimated coverage of more than 50% of the forested plot area. 

The on-site stratum labelling of the plot was accompanied by a summarizing assessment of the forest 

structure environment at a distance of at least 10 meters around the plot boundary. Inhomogeneity 

between inside and outside the plot resulted in exclusion from training and test observations. This buffer 

ensured that deviation of the measured plot centre from its true position did not consequently lead to a 

divergence between field plot forest structure and LiDAR characteristics. Additionally, this avoided 

boundary situations as recommended by Dicks and Lo (1990). 

Field situations usually differ from ideal forest structure conditions described in theoretical stratum 

definitions. In some points, descriptions were intentionally vague to cover a broader range of structural 

features within one stratum (Table 3-1). Both aspects created variation in the confidence of stratum 
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labelling, which reasonably influenced classification accuracy (Foody, 2002). To limit the variation, 

only plots with clear membership after on-site evaluation were admitted to further selection.  

However, a representation of intra-stratum variability of structural features and a simultaneous emphasis 

of differences to the other strata had to be assured (Pelletier et al., 2017). Particularly important was the 

inclusion of observations with or without optional structural elements, referred to as ‘possible’ in  

Table 3-1. The general method to regard optional structural elements has been the aspiring of the ideal 

balance to train the whole range of recognizable structural patterns of one stratum. A frequent example 

posed isolated trees occurring in the strata gap and thicket. The training and test observations had to 

represent both subgroups of each stratum in a sufficient number, with and without isolated trees. 

Simultaneously, the boundaries between strata were aimed to be defined as clearly as possible. 

Sometimes unambiguous stratum decisions emerged to be a challenge in the field, clear memberships 

by strict exclusion of ambiguous plots was preferred. Inevitably, this led to broadened transition zones 

between strata. 

By this means, 96 training and test observations were chosen from 245 field plots within stratum 2 to 7. 

Together with 15 opening plots (stratum 1) 111 observations were finally introduced to the RF 

classification (Table 3-1). 

3.7.3 Evaluation of stratum labelling 

Following the selection of training and test observations the labelling of strata 2 to 7 was evaluated by 

descriptive statistics. Stratum 1 was excluded, as no field data existed. Also, due to the low vegetation 

height threshold, the LiDAR data was supposed to assure the differentiation to the other strata. The 

evaluation of the remaining six strata based on the distribution of DBHs that were measured during the 

field campaign, and the 90th height percentiles (ℎ𝑝90) of the cylindrical LiDAR-segments per plot. 

Diameter measurements were compared to the DBH reference values whereas ℎ𝑝90 was interpreted as 

the upper boundary of the main tree height interval (Table 3-1). Thus, they were appropriate parameters 

to evaluate the compliance with the references as well as for estimating the differentiation capacity of 

the selected observations.  

In principle, the DBH distribution of each stratum was left skewed and mean diameters ranged 

approximately between 8 and 25 cm. This shows the impact of larger numbers of low-dimensional trees 

than of mid- to high-dimensional trees (Figure 3-4). The distributions of stratum 3 (thicket) and 

stratum 5 (mid-dimensional single-story) differed considerably from the other strata. The lower 75% of 

stratum 3 diameters lied within a narrow range between 7 and approx. 15 cm which was in line with the 

reference value. Stratum 5 diameters showed an average of approx. 25 cm while their range was 

comparatively broad and the skewness was only moderately directed to the left. In comparison to the 

reference values this effect was expected but in a larger extent (Table 3-1). Two reasons might have 

caused the mitigation. Firstly, plots perfectly meeting the stratum description but with diameters 
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between 15 and 20 cm were included in the training and test observations to broaden the spectrum of 

stratum 5 and in parallel to narrow the transition zone to stratum 3. The resulting inaccuracy of tree 

dimension seemed to be acceptable after weighing it against the clearly defined single-layered canopy 

and respective tree heights of 15 to 20 m. Secondly, many plots of stratum 5 comprised a small number 

of trees in the understory. They were negligible with respect to the general impression but cumulated 

they noticeably influenced the DBH distribution. The DBHs of the remaining strata largely lied within 

the expected main DBH range (Figure 3-4). 

The distributions of ℎ𝑝90 showed higher variation between the strata in comparison to the DBH 

distributions (Figure 3-4). All six strata complied with the upper boundary of the reference main tree 

height range (Table 3-1). Stratum 2 showed a comparatively broad range resulting from a variety of 

isolated trees. For this reason, its reference height range was not limited upwards (Table 3-1). The trees 

in stratum 5 tended in majority to the lower heights of the reference height range which is consistent 

with the DBH distribution. Stratum 4 and 7 showed a compact range between the 1st and 3rd quartile 

indicating a quite similar canopy surface structure at different height levels within each of the strata. In 

summary, the ℎ𝑝90 distributions confirmed a well labelled classification of field observations with 

respect to the upper height limit. 

The distribution of DBHs and 90th height percentiles led to the assumption that height measures have a 

considerably higher differentiation capacity. This supported the use of LiDAR remote sensing, where 

height information is a central aspect, and respective height metrics in area-based classification 

approaches (Falkowski et al., 2009).  

  

) 

Figure 3-4 Boxplots of DBH distribution (1) and 90th height percentile (ℎ𝑝90) distribution (2) per stratum 

2 1 
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3.7.4 Imbalance of strata 

The 111 observations were not evenly distributed across the strata (Figure 3-5). Especially stratum 4 

and 7 were underrepresented with 9 and 7 observations respectively. Unbalanced distribution may cause 

poor classification accuracy for the minority strata, as RF is constructed to minimize the overall error 

rate. For this purpose RF tends to focus on accurate prediction of majority strata (Chen et al., 2004). 

Studies classifying imbalanced datasets comprised minority strata of 0.01% to 33% of the total number 

of observations in two or multiple strata datasets (Chen et al., 2004; Khoshgoftaar et al., 2007; Lin and 

Chen, 2013). This indicated that a share of 8.2% for stratum 4 and 6.4% for stratum 7 was a level of 

imbalance which could have had negative influence on the accuracy of the minority strata. Sun et al. 

(2009) pointed out that until their review, most of the research was done exclusively to binary strata 

imbalance problems and typical imbalance strategies of binary applications were not directly applicable 

to multi strata cases. They also stated that the degree of imbalance deteriorating the classification 

performance depends on additional factors like sample size and separability of strata. Thereby, the 

negative impact of imbalance increases if the number of observations is small and the level of inter-

stratum noise is high (Sun et al., 2009). With an overall observation number of 111 and minority strata 

numbers of 9 and 7 the training and test set met the requirement to be small (Japkowicz and Shaju, 

2002). Although separability was not explicitly measured, it was expectable that the strata 4 and 7 had 

a high potential for confusion due to their multi-layered structure. For example, sparsely occurring trees 

in the mid-dimensions could have caused similarity to stratum 6 by resembling a bimodal return height 

distribution. Therefore, it seemed to be reasonable to adapt RF to imbalanced data. Two basic adaption 

principles are discussed in literature. Cost-sensitive training introduces weighting factors putting 

increased emphasis on minority classification accuracy. In contrast, sampling strategies base on 

balancing observation numbers across strata (Chen et al., 2004; Kuhn and Johnson, 2013). Both 

approaches can be applied to imbalanced multi strata cases but cost-sensitive learning requires 

considerably higher tuning effort than sampling techniques (Kuhn and Johnson, 2013). Process 

transparency and experiences with two strata sampling (van Hulse and Khoshgoftaar, 2009) gave 

advantage to the application of sampling strategies and in particular to inherent down-sampling during 

the observation sampling process of RF (Kuhn and Johnson, 2013). Explicitly referred to multi-strata 

down-sampling unrestricted application was assumed for two reasons. Firstly, stratified down-sampling 

of multiple strata resulted in reducing each stratum to the number of the weakest stratum which is 

basically identical to down-sampling of imbalances between two strata. Secondly, the consideration rate 

of majority strata observations increased by repeated down-sampling within RF bootstrapping. In turn, 

the risk of information loss decreased if a sufficiently high number of trees in the RF ensemble was 

chosen (Kuhn and Johnson, 2013). Basing on these assumptions down-sampling of majority strata had 

been introduced in the training process (line 10, Table 3-6). 



Material and methods 

28 

 

3.7.5 Missing values 

Not availbale values and infinite values (NA and Inf) occurred in the LiDAR metrics dataset of the entire 

national park and in field plot LiDAR metrics. NAs resulted from the absence of returns in specific 

datasets (e.g. 𝑛𝑣𝑒𝑔 = 0 at many openings). Infinite values arose from dividing by zero (e.g. ℎ𝑝99
𝑓

= 0). 

Although reasons for infinite entries differed from those for NA, both had been treated equally due to 

not suffering a loss of information by replacing Inf with NA. The term missing value (MV) is 

collectively used in the further course. Strategies for treating MVs had often been discussed in literature 

due to their frequent occurrence in datasets and the subsequent difficulties in processing, e.g. in 

classification routines (Little and Rubin, 2002; Saar-Tsechansky and Provost, 2007; Jerez et al., 2010; 

Newman, 2014). Explicitly in RF algorithms MVs cannot be processed (Kuhn et al., 2016). Their 

treatment had to be weighed for this study by analysation of underlying patterns and reasons for 

occurrence. 

In the training and test observation data MVs were limited to 13 observations exclusively of stratum 1 

and to 12 predictors (Table 3-4). Overall 120 missing values occurred. The metrics affected by MVs 

could be split into two groups. The first group comprised all predictors depending on vegetational 

LiDAR returns. In many of these cases openings showed zero returns at a height of 0.5 m and above. 

Calculation of vegetational predictors consequently failed and resulted in NA. The MVs of the second 

group depended on dividing by zero.  

The BFNP dataset contained MVs in 2712 observations which were located mostly in openings, as 

indicated by 2364 cases with zero returns above 0.5 m. Additional 348 observations showed between 1 

Figure 3-5 Imbalanced numbers of observations across strata 
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and 194 returns at 0.5 m or above. Their membership to stratum opening was assumed as well. The 

residual six observations had in contrast no returns below 2 m of height which led to MVs in the 

understory penetration rate predictor (𝑝𝑟. 𝑢𝑠𝑡). They were located on the one hand on the roof of a large 

building and on the other hand in quarries. In both cases the DTM undercut the topology over a wider 

area which artificially lifted the returns during the normalization process (see chapter 3.6.1). In total 

22415 MVs occurred and despite of the six understory penetration rate cases all of them were limited to 

the identical 12 predictors as at the training and test observations (Table 3-4).  

Table 3-4 Missing value occurrence and respective imputation strategy 

  Number of missing values   

Group Predictor 
training and test 

observations a BFNP Imputation 
imputing 

value/metric 

ze
ro

 r
et

u
rn

s 
>

=
 0

.5
 m

 

ℎ𝑚𝑒𝑎𝑛
𝑣𝑒𝑔

  12 2364 deductive ℎ𝑚𝑒𝑎𝑛  

ℎ𝑚𝑒𝑑
𝑣𝑒𝑔

  12 2364 deductive ℎ𝑚𝑒𝑑  

ℎ𝑚𝑒𝑑.𝑟.99
𝑣𝑒𝑔

  12 2512 deductive 0 m 

𝑠𝑑𝑣𝑒𝑔  13 2457 deductive 𝑠𝑑  

𝑣𝑎𝑟𝑣𝑒𝑔  13 2457 deductive 𝑣𝑎𝑟  

𝑐𝑜𝑣𝑣𝑒𝑔  13 2457 deductive 𝑐𝑜𝑣  

𝑠𝑘𝑒𝑤𝑣𝑒𝑔  13 2460 deductive 𝑠𝑘𝑒𝑤  

𝑘𝑢𝑟𝑡𝑣𝑒𝑔 b 13 2460 deductive 𝑘𝑢𝑟𝑡  

d
iv

is
io

n
 b

y
 0

 

ℎ𝑚𝑒𝑑.𝑟.99  6 801 deductive 0 m 

𝑐𝑜𝑣  7 1349 missForest  

𝑠𝑘𝑒𝑤  3 364 missForest  

𝑘𝑢𝑟𝑡 b 3 364 missForest  

𝑝𝑟. 𝑢𝑠𝑡   6 missForest  

Sum  120 22415    
a limited to openings, b excluded after missForest imputation 

 

The limitation of MVs primarily to openings showed that they were systematically distributed in both 

datasets. Hence, deletion of incomplete observations was not expedient because of disproportionate 

sample size reduction (Little and Rubin, 2002; Newman, 2014). Considering the training and test 

observations 13 of 15 opening plots were affected by MVs. Deletion would have inhibited the 

classification of this stratum. For similar reason dropping of the 13 predictors with MVs was not applied 

to maintain their explanatory power. Instead, imputation methods were used to avoid discarding valuable 

information. To achieve a feasible compromise between imputation accuracy and computation time a 

combination of deductive and algorithmic imputation was applied (Tang and Ishwaran, 2017).  
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The algorithmic imputation was executed before deductive imputation of MVs because missForest 

imputation results were used to manually impute remaining MVs. The missForest algorithm, an iterative 

imputation method based on RF regression and classification, was used to predict MVs by ensemble 

learning (Stekhoven and Buhlmann, 2012; Stekhoven, 2013). Due to its RF roots the advantages 

mentioned in chapter 3.7.1 applied to missForest as well. In particular, missForest offers OOB error 

estimates to assess the quality of the imputation procedure (Stekhoven and Buhlmann, 2012). In 

comparison with alternative algorithms missForest frequently outperformed compared imputation 

results (Stekhoven and Buhlmann, 2012; Tang and Ishwaran, 2017). 

A reduction of MV affected predictors imputed by missForest was necessary to limit the computational 

time for the BFNP dataset. Selecting 𝑐𝑜𝑣, 𝑠𝑘𝑒𝑤, 𝑘𝑢𝑟𝑡 and 𝑝𝑟. 𝑢𝑠𝑡 for algorithmic imputation resulted 

from the absence of logical rules for deductive imputation. The number of calculated ensemble trees 

(ntree) per iteration was set to 50. These measures limited the computational time to around three days 

instead of the estimated 75 days for all MVs (personal communication Reinhardt, K., 2017). In addition, 

the maximum iteration value was set to 6, which defined the maximum number of iterative variable 

reduction if the stopping criterion was not met beforehand (Stekhoven and Buhlmann, 2012). In fact, 

the missForest imputation stopped after the third iteration. Thereby, the number of predictor variables 

randomly sampled at each split (mtry) was the default square root of the total predictor number of each 

iteration (Stekhoven and Buhlmann, 2012). The MVs of the trainings and test observation set were 

treated equally in a separate imputation process which stopped after four iterations. 

The OOB imputation error showed divergent results in comparison to the respective means and standard 

deviations (Table 3-5). The predictors 𝑐𝑜𝑣 and 𝑝𝑟. 𝑢𝑠𝑡 showed small OOB errors within an interval of 

one standard deviation. Skewness imputation (𝑠𝑘𝑒𝑤) provided ambivalent results. In the training and 

test set the OOB error was almost 250% of the standard deviation. In contrast, it stayed beyond 10% of 

the standard deviation of skewness in the BFNP data. Overall, the errors were considered acceptable 

and 𝑠𝑘𝑒𝑤 remained as predictor in both datasets. The imputation of 𝑘𝑢𝑟𝑡 produced estimated errors 

largely exceeding the respective interval of one standard deviation in both datasets (Table 3-5). Kurtosis 

was consequently omitted from further processing. Because 𝑘𝑢𝑟𝑡 was intended to impute 𝑘𝑢𝑟𝑡𝑣𝑒𝑔 after 

itself was imputed, both parameters were removed from the pool of LiDAR metrics (b in Table A-1). 

Thus, the number of potential RF predictors decreased to 58. 

 Table 3-5 Out-of-bag (OOB) error estimates of missForest in comparison to respective mean and standard deviation (SD) 

Predictor 
Training and test observations  BFNP 

OOB error Mean SD  OOB error Mean SD 

𝑐𝑜𝑣  0.12 1.01 0.84  0.01 0.96 0.75 

𝑠𝑘𝑒𝑤  24.11 2.14 10.17  0.17 0.53 2.60 

𝑘𝑢𝑟𝑡  275552.16 120.32 806.88  3724.22 9.87 182.24 

𝑝𝑟. 𝑢𝑠𝑡      0.00 0.79 0.17 

 



  Material and methods 

31 

Deductive imputation bases on the principle that representative metrics may reasonably substitute 

missing values (Waal et al., 2011). The ideal form of imputation is given, when the analysis of the 

underlying error mechanism would lead to only one possible value (Kalton and Kasprzyk, 1986). But 

deductive imputation is reasonable as well, if the mechanisms can be guessed with high accuracy level 

(Waal et al., 2011). In the case of ℎ𝑚𝑒𝑑.𝑟.99 the MVs resulted from dividing by 0 m (ℎ𝑝99
𝑓

) while the 

median was 0 m as well. The manual imputation with 0 m was reasonable because ℎ𝑝99
𝑓

 would start to 

become positive when 1% of first returns exceeds 0 m of height. From this point, the median would 

remain at 0 m till 50% of all returns lie above the ground. Thus a ℎ𝑚𝑒𝑑.𝑟.99 of 0 m should be 

representative for openings where vegetation height is low.  

The remaining predictors assigned for deductive imputation contained MVs because of the absence of 

returns at or above 0.5 m which resulted in empty vegetation datasets (Table 3-4). This situation 

occurred only in low vegetated areas. To impute these predictors a replacing of vegetational metrics was 

consequent, depending on data_0.5 by the respective metrics along the entire height range (data_0). 

Metrics based on data_0 comprised ground surface and close to ground vegetation which closely 

approximated the vegetational indices in these specific situations. 
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3.7.6 Correlation of imputed LiDAR metrics 

The effect of predictor correlations on classification algorithms and especially on importance measures 

was object of various studies (Gregorutti et al., 2017). Special focus was set on RF and its internal 

variable importance due to increasing relevance in science. However, summarising the results revealed 

ambiguous effects of predictor correlation on RF (Gregorutti et al., 2017). Because of this controversy, 

the risk of biasing variable importance by including correlated predictors against potential loss of 

valuable predictors after predictor selection should be carefully weighed. This was particularly 

important for the residual 58 predictors because pairwise correlation analysis revealed strongly 

correlated and anti-correlated variables (Figure 3-6). Analysing the Pearson correlation coefficients 

yielded only nine predictors with overall moderate to low correlation below an absolute value of 0.8 

(Fahrmeir et al., 2011). These were ℎ𝑚𝑒𝑑.𝑟.99
𝑣𝑒𝑔

 (21), 𝑐𝑜𝑣 (30), ℎ𝑝10 (39), 𝑠𝑑ℎ𝑞3 (55), 𝑑𝑒𝑛𝑠. ℎ𝑙]1,2] (58), 

𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] (59), 𝑑𝑒𝑛𝑠. ℎ𝑙]10,20] (60), 𝑑𝑒𝑛𝑠. ℎ𝑙]30,60] (62) and 𝑒𝑧𝑟𝑒𝑙 (86). 

 

Figure 3-6 Correlation matrix of 58 LiDAR metrics after missing value imputation (Table A-1) 
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In their detailed introduction to feature selection Guyon and Elisseeff (2003) pointed out that only 

perfectly correlated variables are truly redundant. They stated that even highly correlated predictors 

might gain additional information (Guyon and Elisseeff, 2003). This is supported by the results of Cutler 

et al. (2007) who did not recommend an elimination of predictors solely for reduction of correlation. 

Therefore, feature selection methods processed before and independent from the classification algorithm 

were not applied in this study. Instead, integrated recursive feature elimination was used due to 

presumed redundancies indicated by the occurrence of perfectly correlated metrics. 

3.7.7 Recursive feature elimination and final model selection  

A feature selection routine reducing LiDAR metrics was used for two reasons. At first, perfectly 

correlated predictors do not lead to information gain (Guyon and Elisseeff, 2003) but might have 

negative effects on the model accuracy (Gregorutti et al., 2017). Secondly, keeping classification models 

parsimonious increases the interpretability of their results by selecting the relevant predictors (Nilsson 

et al., 2007). To prevent information loss due to elimination of relevant LiDAR metrics, recursive feature 

elimination (RFE) was applied which uses variable importance measures of classification algorithms for 

the selection (Guyon et al., 2002). In the present study RF’s inherent variable importance measurement 

served as the RFE ranking criterion (Breiman et al., 1984; Kuhn et al., 2016). The applied RFE approach 

comprised an iterative three-stage procedure. At first the RF classifier was trained. Secondly, the 

importance variables were computed and the predictors were ranked accordingly. As the last step 

predictors with the weakest importance were removed (Guyon et al., 2002). Gregorutti et al. (2017) 

showed that RFE provides reliable results in identifying parsimonious RF models of high accuracy even 

under the condition of correlated predictors. The implementation of RFE in this study was wrapped in 

an outer resampling (Table 3-6, line 3) considering the improvement suggestion of Kuhn and Johnson 

(2013). They criticised that the control of the RFE results by leave-one-out cross-validation took place 

after the feature selection in the originally published RFE procedure by Guyon et al. (2002). This would 

lead to biased model results with expectable low error rates (Ambroise and McLachlan, 2002). To 

decrease the likelihood of selection bias an outer resampling was implemented by a 10 times repeated, 

5-fold cross-validation (Kuhn and Johnson, 2013). By this, variation of feature selection was induced as 

only 80% of the observations were used for training purpose (Table 3-6, line 4 and 10) and 20% for 

performance measurement (Table 3-6, line 5 and 11).  

The last control level for biased model results was established in advance by random partitioning of the 

original data. Hereby, independent test observations were separated which comprised 30% of each 

stratum (test_1; Table 3-6, line 2). This subset was not included in the RF training and prediction 

procedures. It represented the last stage for testing the final model based on the RFE selected predictor 

variables (Kuhn and Johnson, 2013). The resulting performance parameters of this prediction were used 

to evaluate the final model (Table 3-6, line 18). 
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One important setting within the RFE procedure is the subset of predictors (𝑆𝑖). It determines the 

numbers of predictors (𝑖) which should be tested to find the best model under the secondary condition 

of model parsimony (Kuhn and Johnson, 2013). The interval for 𝑖 ranged between 1 and 25 while this 

range was incremented by two at the beginning, before it continued in steps of one from 9 to 25  

(Table 3-6, line 8). This interval limited computational effort by inducing 21 iterations on the one hand 

and covered the most likely range of subset sizes on the other hand. A maximum of 25 predictors seemed 

to be reasonable under the objective of a parsimonious model. 

 Table 3-6  Resampled RF classification incorporating recursive feature elimination and class down-sampling 

  (according to Kuhn and Johnson, 2013) 

 

The model performance for each subset was measured by the area under the receiver operating 

characteristics curve (AUC) due to its advantages to scalar measures, e.g. classification accuracy or error 

rates (Fawcett, 2006). Receiver operating characteristics (ROC) are widely used in classifier selection 

due to representing the trade-off between true positive and false positive classification decisions. The 

AUC is a single scalar value representing the expected performance of a classifier by combining ROC 

values of resampled training and test runs (Fawcett, 2006; Kuhn and Johnson, 2013). The selection of 

the most important predictor subset depended on the exceedance of an AUC threshold (Table 3-6, line 

15). This value was set to 98.5% of maximum performance reached by RF models within the subset 

interval and by the full model (i.e. all predictors included). Assuming a degressively increasing 

1 Missing value imputation 

2 Class-stratified, random partitioning of basic data in training_1 (70%) and test_1 set (30%) 

3  for each resampling iteration (10 times repeated, 5-fold cross-validation) 

4   Partitioning of training_1 data into training_2 and test_2 set via resampling 

5   Random Forests training on down-sampled training_2 data using all predictors 

6   Prediction on test_2 data 

7   Calculation of variable importance or rankings 

8   for each subset 𝑆𝑖, i = 1, 3, 5, 7, 9, 10, …, 25 

9    Keeping the Si set of the 𝑖 most important predictors 

10    Random Forests training on down-sampled training_2 data using Si 

11    Calculation of model performance by predicting the test_2 data 

12   end 

13  end 

14  Calculation of the performance profile over 𝑆𝑖 

15  Determination of the appropriate number of predictors 

16  Estimation of the final list of predictors to keep in the final model 

17  Fitting the final model based on the optimal 𝑆𝑖 using the training_1 set 

18 Prediction on the test_1 data 
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development of AUC with increasing number of predictors, the threshold approach should fix the subset 

size at an early stage of constant performance levelling. Following the determination of the appropriate 

number of predictors the final list of most important predictors had to be estimated (Table 3-6, line 16). 

An estimation was necessary due to the wrapping resampling process which produced multiple lists of 

favourite predictors. Therefore, a consensus ranking routine, implemented in the RFE algorithm, 

enabled the predictor selection (Kuhn et al., 2016). At last, the final model was fitted to the original 

training observations (training_1) based on the most important predictors (Table 3-6, line 17). 

3.7.8 Model performance evaluation 

The model performance was assessed by several accuracy statistics. The evaluation statistics were 

divided into the OOB estimates produced during the model training process (Breiman, 2001; Liaw and 

Wiener, 2002), and the final model control on the independent test observations (Table 3-6, line 18). 

The statistics comprised summarising performance indicators and those calculated for each classified 

stratum. The summarising statistics represented the error rate, the overall accuracy and the kappa 

coefficient (𝛫𝐻𝐴𝑇). The error rate is defined as the percentage of false classifications in relation to the 

sum of all classified observations. Vice versa, the accuracy calculates the percentage of correct 

classifications (Congalton, 1991; Kuhn and Johnson, 2013; Kuhn et al., 2016). This study additionally 

reported the 𝛫𝐻𝐴𝑇 as a more informative, summarizing indicator, because the suitability of error rates 

and accuracies for model evaluations are controversially discussed (Congalton, 1991; Kuhn and 

Johnson, 2013). Its calculation followed equation 21 where 𝑟 is the number of rows, 𝑥𝑖𝑖 the number of 

observation in row 𝑖 and column 𝑖 with 𝑥𝑖+ and 𝑥+𝑖 as the marginal totals of the respective row and 

column. At last, 𝑁 is the total number of observations (Congalton, 1991). 

𝐾𝐻𝐴𝑇 =
𝑁 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 −∑ (𝑥𝑖+∗𝑥+𝑖)𝑟

𝑖=1

𝑁2−∑ (𝑥𝑖+∗𝑥+𝑖)𝑟
𝑖=1

  (21) 

The indicators per stratum, producer’s accuracy (PA) and user’s accuracy (UA) supplemented the 

evaluation of model performance. They were calculated on the basis of the equations 22 and 23 (Kuhn 

and Johnson, 2013; Kuhn et al., 2016). PA is the relative share of correctly classified observations within 

one stratum while UA reports the ratio of correctly predicted observations to all observations classified 

in one stratum. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (22) 

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (23) 

The underlying confusion matrices were calculated as a result of the RF algorithm executed in R (R Core 

Team, 2015; Kuhn et al., 2016). They showed estimated classification results for the OOB predictions 

and final results for the prediction of the independent test observations. Basically, all performance 

indicators mentioned above based on confusion matrices. However, in the case of the OOB estimates 
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the indicators can seem to be unrelated to the confusion matrix on the trainings observations. This results 

from various background calculations of the RF algorithm to average the OOB indicators over the 

bootstrapped classification trees (Breiman, 2001; Kuhn et al., 2016). In contrast, the confusion matrix 

at the end of the RF training process displays the prediction result of the final model on the training 

observations (Table 3-6, line 17; Kuhn et al., 2016). 

3.7.9 Classification and accuracy assessment 

The segmented and imputed BFNP dataset was classified by means of the final classification model 

(Table 3-6, line 17). Afterwards the classified area was limited to areas representing either conifer 

dominated forests or areas of opening and gap characteristics (Table 3-1). The selection based on forest 

stand descriptions of the most recent forest management data of 2014 (personal communication 

Gärtner, S., Birk, S., & Dreiser, C., 2017). These descriptions were automatically filtered for expressions 

indicating dominantly coniferous tree species. Specific sites like forest glades, heathlands with mountain 

pine vegetation (Pinus mugo TURRA) and forest gap structures were added. Deciduous and equally 

mixed forest stands were excluded as well as sections of main roads, car parks, and water surfaces. 

Across the strata, sets of conditional density plots (CDP) were compared. Thus, an indicator for the 

differentiation capacity of predictors and also a basis for ecological interpretation of classification results 

could been gathered (Falkowski et al., 2009). The highest listed predictor of each metric group according 

to the variable importance of the final model was chosen as a representative sample (Figure 4-2 and 

Table A-1). The CDPs were created for each stratum summarising all final classified grid cells. The 

ecological interpretation focused on the comparison of forest structure definitions of the strata  

(Table 3-1) and the CDP characteristics. The assessment of the differentiation capacity based on the 

degree of dominant occurrence probabilities. In the case of well differentiable strata the patterns of the 

CDPs would show clearly noticeable differences and dominant probability maxima. Increasing 

similarity in combination with reduced probability indicates poor identifiability by the given set of 

predictors.  

The classification results could not be evaluated by confusion matrices, due to the lack of references. 

An analysis of stratum membership information was used instead to assess the quality of the 

classification. The stratum membership probability was analysed to identify possible delimitation 

difficulties between the strata (Foody, 2002; Falkowski et al., 2009). The required membership 

information was automatically produced by the RF classification algorithm, which stored each vote 

probability per stratum per cell. With increasing maximum vote probability the classification decision 

becomes more unambiguous (Foody, 2002). Assuming a rare occurrence of misclassifications with high 

probability for the wrong stratum, the confidence of the classification is supposed to rise with increasing 

probability of the maximum vote.
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4 Results 

4.1 Predictor selection and variable importance 

The recursive feature elimination, inherently applied in the RF classification, reduced the number of 

predictors involved in the final model from 58 to the 13 most important LiDAR metrics. The criterion 

for the model selection was the exceedance of the ROC threshold defined as 98.5% of the highest 

occurring ROC value over the tested number of variables. The maximum ROC was 0.980 by using all 

variables in the model (not shown in Figure 4-1). The resulted threshold of 0.966 was firstly reached by 

the 13-predictor model (filled red circle, Figure 4-1). The model, selected by the RFE algorithm, 

contained the following predictors according to the RF variable importance (Figure 4-2): mean height 

(ℎ𝑚𝑒𝑎𝑛), median height (ℎ𝑚𝑒𝑑), standard deviation (𝑠𝑑) and variance (𝑣𝑎𝑟) of heights, skewness of 

vegetation heights (𝑠𝑘𝑒𝑤𝑣𝑒𝑔), 60th, 70th, 80th, and 90th height percentile (ℎ𝑝60/70/80/90), standard 

deviation of return heights between the 1st and 2nd height quartile (𝑠𝑑ℎ𝑞2), relative percentage of returns 

between 2 m and 10 m of height (𝑑𝑒𝑛𝑠. ℎ𝑙]2,10]), penetration rate through the understory (𝑝𝑟. 𝑢𝑠𝑡), and 

number of closed gap voxels (𝑐𝑔) within or below the canopy (c in Table A-1). 

 

The specific return density 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] clearly proved to be the most important predictor with a mean 

decrease of the GINI index of approximately 9 index-points. The remaining twelve predictors ranged 

between 6 and 4 index-point decreases (Figure 4-2). The two most important predictors characterized 

return densities in heights between 0.5 m and 10 m in total. This height interval excluded the influence 

of ground returns and set the focus on heights where usually returns occurred across all forested strata. 

ROC threshold: 0.985*ROCmax
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Figure 4-1 RFE calculated ROC values for RF models of 
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Above ten meter of height a lot of training and test plots of the strata gap and thicket showed no returns 

due to their low vegetation heights. The occurrence of four height percentile predictors, mean height, 

and median height within the list of the most important predictors emphasized the influence of height 

metrics in the classification of forest structure. Standard deviation over the entire height range and within 

the second height quartile, variance, and skewness of vegetation returns indicates that metrics 

characterizing the vertical return distribution were of considerable importance as well. The number of 

closed gap voxels introduced the 3D return distribution aspect in the model, although it had the lowest 

impact of the 13 most important predictors (Figure 4-2). 

4.2 Correlation of final model predictors 

Analysis of pairwise Pearson correlation coefficients of the 13 variables included in the final model 

showed mostly high correlations or anti-correlations. As the only predictors 𝑝𝑟. 𝑢𝑠𝑡 and 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] 

yielded low pairwise correlation to the remaining ten predictors. The correlation coefficient between 

these two predictors met the border to medium correlation (Figure 4-3; Fahrmeir et al., 2011). The height 

related metrics (ℎ𝑚𝑒𝑑, ℎ𝑚𝑒𝑎𝑛, ℎ𝑝60/70/80/90), standard deviations (𝑠𝑑, 𝑠𝑑ℎ𝑞2), 𝑣𝑎𝑟, and 𝑐𝑔 built a group 

of very high to perfectly correlated predictors. Every metric of this group showed in turn high anti-

correlation to 𝑠𝑘𝑒𝑤𝑣𝑒𝑔 (Figure 4-3). 

  

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
pr

.u
st

de
ns

.hl
2

10

hm
ed

hp
60

cg hp
80

hm
ea

n

hp
70

sd
hq2

hp
90

sd va
r

skewveg

pr.ust

dens.hl2 10

hmed

hp60

cg

hp80

hmean

hp70

sdhq2

hp90

sd

0.15 0.05

-0.51

-0.88

-0.32

0.08

-0.86

-0.34

0.09

0.99

-0.86

-0.29

0.06

0.96

0.97

-0.84

-0.35

0.11

0.95

0.97

0.98

-0.86

-0.32

0.09

0.98

0.98

0.99

0.98

-0.85

-0.36

0.11

0.97

0.99

0.97

0.99

0.99

-0.79

-0.36

0.18

0.91

0.93

0.88

0.92

0.89

0.93

-0.8

-0.35

0.1

0.91

0.93

0.97

0.98

0.96

0.96

0.89

-0.77

-0.37

0.09

0.86

0.89

0.94

0.96

0.93

0.93

0.89

0.99

-0.76

-0.37

0.09

0.86

0.89

0.94

0.96

0.93

0.93

0.89

0.99

1

Figure 4-3 Correlation matrix of the 13 most important predictors of the final RF model (dens.hl]2,10] is 

replaced by dens.hl2-10 in this figure) 



  Results 

39 

4.3 Classification accuracy and performance 

4.3.1 OOB estimates 

The OOB error statistics, inherently calculated during the RF bootstrap process, revealed an OOB 

estimated classification error rate of 12.35%. The total accuracy over all bootstrap samples was 81.47% 

while the kappa coefficient (𝛫𝐻𝐴𝑇) was 0.78.  

On a stratum individual basis, the opening observations (stratum 1) were perfectly classified with a 

producer’s and user’s accuracy of 1.00 (Table 4-1). The lowest PAs were reported for the two multi-

story strata, low- to mid-dimensional (stratum 4) and multi-dimensional (stratum 7), with 0.71 and 0.80 

respectively. Stratum 4 showed confusion with thickets (stratum 3) as well as with mid-dimensional 

single-story forest structures (stratum 5). The classification of stratum 7 showed a tendency to forest 

structures of mid- to high-dimensional, single-storied characteristic with regeneration (stratum 6). 

Pairwise confusion was revealed between gaps (stratum 2) and thickets as well as between stratum 5 

and stratum 6 (Table 4-1). Although this had reduced PAs as a consequence they reached accuracy 

values from 0.86 to 0.92. The UAs divided the strata in two groups. The openings and the two multi-

story strata were free of erroneously classified plots of other strata with UAs of 1.00 (Table 4-1). The 

remaining strata either showed pairwise confusion (stratum 2 and stratum 3; stratum 5 and stratum 6) or 

misclassification of multi-story strata. Thus, misclassification shifts from multi-story strata to 

structurally adjacent strata occurred more frequent than shifts towards multi-story strata. The UAs of 

the respective, confused strata ranged between 0.80 and 0.88 (Table 4-1). 

 

Table 4-1 OOB confusion matrix and classification performance measures per stratum 

a for stratum information see Table 3-1  

  Reference 
 User’s 

accuracy 

 Stratum a 1 2 3 4 5 6 7   

P
re

d
ic

ti
o

n
 

1 11 0 0 0 0 0 0  1.00 

2 0 12 2 0 0 0 0  0.86 

3 0 1 14 1 0 0 0  0.88 

4 0 0 0 5 0 0 0  1.00 

5 0 0 0 1 13 2 0  0.81 

6 0 0 0 0 2 12 1  0.80 

7 0 0 0 0 0 0 4  1.00 

           

Producer’s 

accuracy 
1.00 0.92 0.88 0.71 0.87 0.86 0.80 
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4.3.2 Test observations 

The test_1 set of observations, separated before the model training process started, was used to perform 

an independent assessment of classification accuracy and performance of the final model (Table 3-6, 

line 2 and 18). The prediction of these 30 observations revealed an overall classification accuracy of 

90.00%. The increased accuracy in combination with a kappa coefficient rise to 0.88 revealed a 

considerably better model performance on the test data in comparison to the OOB estimates. 

Besides stratum 1, as already reported by the OOB estimates, stratum 2 and stratum 3 were additionally 

classified with PA and UA of 1.00 on the test observations (Table 4-2). Regarding the PAs the confusion 

analysis reported accuracies for stratum 5 and stratum 6 of 0.83 and 0.80 respectively. In the case of 

stratum 5 one observation was misclassified as a stratum 6 and one stratum 6 reference plot was 

attributed to stratum 7. Based on only two test observations, stratum 7 showed a split result with a PA 

of 0.50 due to confusion with stratum 4. Consequently, the UA of stratum 4 was reduced to 0.67. The 

UAs of the strata 6 and 7 were influenced by the before mentioned, single misclassifications from the 

strata 5 and 6. Again stratum 7 seemed to be strongly influenced with respect to its UA of 0.50 but this 

resulted again from one incorrectly classified reference plot. No observation was erroneously classified 

as stratum 5 which led to a UA of 1.00 (Table 4-2). 

 

Table 4-2 Test observation confusion matrix and classification performance measures per stratum 

a for stratum information see Table 3-1 

 

 

  

  Reference 
 User’s 

accuracy 

 Stratum a 1 2 3 4 5 6 7   

P
re

d
ic

ti
o
n
 

1 4 0 0 0 0 0 0  1.00 

2 0 5 0 0 0 0 0  1.00 

3 0 0 6 0 0 0 0  1.00 

4 0 0 0 2 0 0 1  0.67 

5 0 0 0 0 5 0 0  1.00 

6 0 0 0 0 1 4 0  0.80 

7 0 0 0 0 0 1 1  0.50 

           

Producer’s 

accuracy 
1.00 1.00 1.00 1.00 0.83 0.80 0.50 
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4.4 Classification results 

By the restriction to conifer dominated forest stands the overall classified area was reduced from 

10,062 ha to 9,804 ha (Table 4-3; Figure 4-4). A lot of deciduous dominated forest stands were excluded 

from the classification especially in the north of the northern part.  

Almost half of the BFNP was classified as stratum 3 and 5 (23.0% and 25.2%). Both strata form larger 

entities which were clearly identifiable in the overview map (Figure 4-4). Stratum 2 represented 17.5% 

of the classified area and appeared often in coherent areas as well. They were mostly adjacent to 

stratum 3. Both strata clearly traced windthrow structures of open to densely regenerated character and 

the typical heathland zone along the main road, B500, on the N-S ridge of the southern part (Figure 4-4). 

Stratum 6 was attributed to 15.5% of the grid cells. It showed ambiguous patterns as some larger units 

were almost exclusively classified as stratum 6 whereas a lot of small, dark brown patches were spread 

over the BFNP. However, a spatial connection between stratum 6 and stratum 5 became obvious  

(Figure 4-4). The lower multi-storied stratum 4 was quite frequently classified with a share of 13.6%. 

Its grid cells were distributed without clearly forming aggregated units. A detailed visual analysis 

revealed that stratum 4 was frequently identified at transitions between lower and higher forested areas. 

This occurred, when stratum 3 was adjacent to stratum 5 or 6. Furthermore, stratum 4 was attributed to 

grid cells at borders of forest edges to open structures like forest roads or glades (Figure 4-4). With a 

share of 4.3% the higher multi-storied stratum 7 was weakly represented. Usually these grid cells 

occurred in combination with stratum 6 and stratum 4. Zones with accumulation of stratum 7 cells were 

dispersed across the national park but they didn’t form coherent areas. Only 0.9% of all grid cells were 

attributed to stratum 1. The areas classified as openings traced mainly forest glades and meadows 

according to the strictly defined training observations. A second emphasis of occurrence was across the 

heathland zones, where loosely spread stratum 1 cells or small patches were recognized in between gap 

and thicket structures (Figure 4-4). 

A differentiated consideration of the two parts of the BFNP showed that stratum 5 clearly dominated 

the northern part (31.0%) where stratum 3 followed as second (19.5%; Table 4-3). In the southern part 

stratum 3 and 5 were almost equally dominant with 24.1% and 23.4% respectively. The strata 4 and 7 

were approx. proportionally distributed to the area relation of northern to southern part. Stratum 1 and 

stratum 2 were underrepresented in the North whereas stratum 6 was overrepresented there (Table 4-3). 

 Table 4-3 Classified area [ha] per stratum 

 

 Stratum  

 1 2 3 4 5 6 7 total 

Area North [ha] 7.8 298.2 456.5 333.2 727.0 411.6 110.4 2,344.7 

Area South [ha] 77.6 1,413.0 1,800.0 1,003.2 1,744.0 1,106.3 315.0 7,459.1 

Area BFNP [ha] 85.4 1,711.2 2,256.5 1,336.4 2,471.0 1,517.9 425.4 9,803.8 
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Figure 4-4 Map of forest structure classification 
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4.5 Stratum membership analysis 

The analysis of the stratum membership probability showed divergent results across the strata which 

were comparable to the confusion matrices of the OOB and test statistics (Figure 4-5, Table 4-1 and 

Table 4-2). The large majority of classified stratum 1 structures were attributed with high confidence 

above 80%. The remaining opening classifications based on votes of at least 40% probability which 

proved the high identification potential of stratum 1. The classification confidence of stratum 2 and 3 

only slightly differed from stratum 1 by the occurrence of votes with a probability of less than 40%. 

With a share of 3.5% and 1.6% they collectively represented only a small area of uncertain attribution 

(Figure 4-5). Even if the classification of stratum 5 and 6 showed comparable results for the lowest 

membership probability interval (3.1% and 5.3%), the share of grid cells classified with high confidence 

above 80% was considerably lower in comparison to the strata 1 to 3. The multi-story strata 4 and 7 

were on average classified with the lowest confidence. The proportions of high probability 

classifications were only 5.8% and 2.0%. The fractions of low probability were 12.6% and 23.6% in 

contrast (Figure 4-5).  

The map of classification confidence (Figure 4-6) underlined that votes with a probability of less than 

40% were the minority. They covered only 5.3% of the study area. In addition, they were loosely 

distributed over the study area. The two intermediate intervals covered almost equal area proportions 

with 27.9% (40% – 60%) and 27.3% (60% – 80%). Classification votes of high confidence 

(80% – 100%) were shown on 39.6% of the area which was the largest proportion of the four intervals. 

Figure 4-5 Classification confidence per stratum divided in four membership probability intervals
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Figure 4-6 Map of classification confidence based on four membership probability intervals 
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4.6 Differentiation capacity of LiDAR predictors 

The relative percentage of returns between 2 m and 10 m of height (𝑑𝑒𝑛𝑠. ℎ𝑙]2,10]) reached the highest 

variable importance (Figure 4-2). Therefore, it was chosen as example for the density metrics group to 

be analysed by stratum-wise conditional density plots (CDP; Figure 4-7). The CDP of stratum 3 showed 

a high differentiation capacity for 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10]. In comparison to the remaining strata a density value 

above 0.5 could be interpreted nearly as a proof for thicket structures. This was ecologically reasonable 

as the height interval between 2 m and 10 m is only sparsely or even not reached by vegetation of 

stratum 1 and 2 while the strata 4 to 7 were defined to do not or only dispersedly show branched trees 

within this height segment (Table 3-1). Stratum 1 revealed almost no considerable occurrence of 

𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] which provided identification potential by the absence of dense vegetation. The 

probability distribution of strata 6, 5, 2 and 4 showed little differences due to slightly increasing maxima 

between densities of 0 to 0.5. However, maximum probabilities around 0.4 revealed that none of these 

strata dominated at any density and thus couldn’t be clearly identified by 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10]. Stratum 7 was 

poorly characterized by 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] (Figure 4-7). 
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Figure 4-7 Conditional density plots per stratum for 

𝑑𝑒𝑛𝑠. ℎ𝑙]2,10]; the dark grey area represents the 

presence of the predictor within the value range (x-

axis) while on the y-axis its probability of occurrence 

associated with the respective stratum is shown; the 

light grey background indicates the absence of the 

predictor 
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Three additional predictors out of the twelve most important LiDAR metrics remaining were chosen to 

analyse the plausibility of the classification results and the underlying stratification. The highest ranked 

predictor out of each metric group were sampled to gain a comprehensive assessment of the 

differentiation capacity between the strata. The second most important representative was the standard 

deviation of return heights between the 1st and 2nd height quartile (𝑠𝑑ℎ𝑞2; Figure B-1) of the group of 

sectioned vertical distribution metrics. Median height (ℎ𝑚𝑒𝑑; Figure B-2) was the highest ranked 

predictor of the vertical distribution metric group while the number of closed gap voxels (𝑐𝑔;  

Figure B-3) represented the 3D return distribution metrics. The further descriptions of the following 

section refer to the mentioned figures without repeated referencing. 

The CDP patterns of stratum 1 of the three additional predictors were identical to that of 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10]. 

Recognisable probability values occurred only at the lowest edges of the predictor ranges. The 

accumulation of zero or near to zero probability values over various predictors supported high 

differentiation capacity by absence. Gap structures of stratum 2 revealed dominant probability values at 

the lower edge of 𝑠𝑑ℎ𝑞2 and ℎ𝑚𝑒𝑑 as well as high probabilities for the lowest values of 𝑐𝑔. The 

predominantly low vegetation of forest gaps (Table 3-1) caused sharp maxima for the standard deviation 

and median height. The right skewed character of the closed gap distribution resulted from occasionally 

occurring isolated trees. In combination, the high probabilities at the lower edges of the value ranges 

indicated a good distinguishability compared to the other strata. Stratum 3 showed three similar 

probability distributions for the additional predictors. They reached maximum probabilities between 

approximately 0.75 and 0.85. Their occurrence probability distribution ranged between 0 and 

approximately the first quartile of each predictor value range. The relatively low vegetation height of 

thickets (Table 3-1) caused the left oriented maximum. The increase in biomass accumulation from the 

top of the highest trees to the densely branched bottom led to the slight skewness to the right. In 

combination with the probability distribution for 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] the predictor set indicated a very good 

differentiation capacity for thicket classifications. The probability distributions of stratum 4 revealed 

only moderate occurrence probabilities over all four predictors with similarities in their CDP 

characteristics. On the one hand, the broad character of 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] and 𝑠𝑑ℎ𝑞2 resulted from the higher 

intra-stratum variability of multi-story strata with respect to ideally homogeneous biomass distribution 

over the height range. On the other hand, the sharper character of ℎ𝑚𝑒𝑑 and 𝑐𝑔 showed intra-stratum 

similarity. The probability distributions of stratum 4 showed overlapping with other strata and reduced 

differentiation capacity with respect to the sampled predictors. Stratum 5 revealed moderate probability 

for low 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] values. This possibly resulted from partial branching down to heights below 10 m 

in classified grid cells due to the exclusion of regeneration and understory by its definition (Table 3-1). 

The forked maximum of the standard deviation probability (𝑠𝑑ℎ𝑞2) underlined the interpretation of 

partially densely and partially sparsely branched forest structures up to the median height. A third 

indication for deep branching was the below average orientation of the probability curve of closed gap 
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voxels. At last the maximum of  ℎ𝑚𝑒𝑑 close to the average of the entire medium height range proved 

accordance with the mid-dimensional aspect of the stratum 5 definition (Table 3-1). The differentiation 

capacity of the four sample predictors regarding stratum 5 was moderate due to no clear dominance at 

any interval across the value ranges. Stratum 6 showed moderate probability at the lower edge of the 

𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] value range as well. Considering the definition of stratum 6, this was probably caused by 

regeneration and low understory (Table 3-1). High probabilities in the upper half of the closed gap value 

range indicated negligible contribution of deep branches at tall trees to vegetation density at lower 

heights. A maximum probability of the height median around 25 m and general high probabilities along 

the ℎ𝑚𝑒𝑑 value range above the height median verified the mid- to high-dimensionality of stratum 6 

(Table 3-1). The dominant probability values of 𝑠𝑑ℎ𝑞2, ℎ𝑚𝑒𝑑 and 𝑐𝑔 proved high differentiation capacity 

regarding stratum 6. The multi-storied stratum 7 reached almost no dominant probability across the four 

sample predictors. Only the sharp peak at the right edge of the cg distribution revealed a narrow interval 

of specific stratum 7 identification potential. Overall, the CDP characteristics of stratum 7 showed broad 

overlapping of different intensity with the probability occurrences of the remaining six strata. This 

verified its ecological definition because multi-storied forest structures and especially those of high 

dimension were supposed to show quite homogeneous biomass distribution across the entire height 

range without specific emphasis. 
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5 Discussion 

5.1 Accuracy and performance measures 

The classification accuracies revealed performance levels from satisfactory to perfect. This divergence 

arose on the one hand between the OOB estimates (see chapter 4.3.1) and prediction of test observations 

(see chapter 4.3.2) and on the other hand among the stratum specific results (Table 4-1 and Table 4-2).  

Almost all performance measures of the test set classification exceeded the RF-internal OOB 

estimations. These differences may be a result of random sampling of the independent test data before 

entering the remaining data in the RF classification algorithm for the model training (Table 3-6). If 

mostly well identifiable observations are selected as the 30% withheld for test purpose and more 

tendentious observations remain in the training pool, this random selection bias may cause deviations. 

This presumed effect, in turn, has its roots in the necessity to attribute discrete classes to continuous 

information in supervised classification approaches. Artificially defined class borders inevitably lead to 

tendencies in classifications (Rocchini et al., 2013). The performance and reliability of OOB error 

estimators are critically discussed as well (Dougherty et al., 2010). However, they are basically accepted 

as estimates for classification accuracy due to their bootstrapped cross-validation character (Fu et al., 

2005; Kuhn and Johnson, 2013). Therefore, the classification assessment mainly focuses on the more 

conservative OOB estimates while the independent test results accompany the comprehensive 

discussion. 

The OOB estimates are preferred in the discussion of inter-stratum variability of classification 

performance following the identical argumentation. But in this context, stratum membership analysis 

extends the basis for interpretation (Figure 4-5). It splits up the stratum vote probability, which mitigates 

the drawback of a hard classification of continuous information (Foody, 1999; Rocchini et al., 2013). 

Thereby, increasing vote probability displays a rising certainty of correct stratum attribution based on 

the assumption that misclassifications with high probability are exceptions. 

5.2 Classification results 

5.2.1 Overall assessment 

An overall OOB accuracy of 81.47% with an OOB estimated 𝛫𝐻𝐴𝑇 of 0.78 proves reasonable 

classification results (Foody, 2002). In comparison to similar studies they can be evaluated as above 

average without achieving optimum accuracy. Falkowski et al. (2009) reported for their comparable 

seven-stratum Random Forests classification an OOB overall accuracy of 90.12% while the 𝛫𝐻𝐴𝑇 was 

0.85 across a structurally diverse, mixed-conifer forest in Idaho (USA). However, they could rise the 

respective parameters to 95.54% and 0.93 by aggregation of two strata and subsequent reduction to a 
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six-stratum scheme. Valbuena et al. (2016) reached an overall accuracy of 72.6% with a 𝛫𝐻𝐴𝑇 of 0.66 

in an eight-stratum RF classification approach by using a considerably less dense LiDAR dataset with 

0.91 returns per square meter in boreal forests in Finland. Based on a single tree approach and a LiDAR 

return density of 2.8 m-2, Alberti et al. (2013) distinguished six forest strata and one shrub stratum with 

an accuracy of 68% and a 𝛫𝐻𝐴𝑇 of 0.58 in mixed-coniferous forests in the Alps. 

The compared studies gave sparse information about the reference data collection and the respective 

sampling scheme which are essential for an accurate benchmark assessment (Congalton, 1991). But by 

reaching an overall accuracy of 81.47% the classification of this study only barely missed the typical 

target accuracy of 85% (Foody, 2002). Considering the impact of relatively high confusion rates of the 

strata 4 and 7 on underrepresented training observations, discussed in the following chapter, this small 

gap seems to be negligible. Therefore, the present study shows that the applied LiDAR based forest 

structure classification approach generally performs well with scope for improvement. 

5.2.2 Strata assessment 

The non-forested and low vegetated stratum 1 was unaffected by misclassifications. Its introduction with 

the objective of classifying open areas in addition to forested strata didn’t lead to confusion with stratum 

2, which represents the structurally most adjacent stratum. For this reason, stratum 1 is a useful 

supplement to cover open areas like meadows, heathland areas or fully open disturbance patches, and 

thereby to avoid widespread, not classified pixels or pixel groups.  

Within the remaining six forested strata three foci of confusion were revealed by the OOB confusion 

matrix (Table 4-1). Firstly, classification decisions between stratum 2 and stratum 3 showed interacting 

confusion. Pursuant to the stratification their differentiation depends largely on canopy cover. 

Respective descriptions of patchy and quite closed regeneration lead to an ecologically reasonable 

transition zone between both strata (Table 3-1). Any artificially defined, discrete boundary in between 

becomes unavoidably blurred by natural dynamics (Rocchini et al., 2013), due to the process of 

successively increasing coverage of woody species on undisturbed or unmanaged forest gap structures 

(Oliver and Larson, 1996). Against this background the results of the OOB confusion matrix and in 

addition of the test prediction indicates high differentiation potential between the selected observations 

of both strata. Marginal membership probabilities up to 40% in combination with most vote probabilities 

exceeding 80% shows that accurate differentiation between stratum 2 and stratum 3 can be assumed for 

the prediction across the BFNP as well (Figure 4-5). This interpretation is consistent with results of 

Falkowski et al. (2009) and Valbuena et al. (2016), both reporting low confusion for partially open or 

dense, low vegetated forest structures. In summary, the classification of stratum 2 and stratum 3 can be 

evaluated as very accurate. 

A second pairwise confusion of moderate severity occurred between stratum 5 and stratum 6, which are 

structurally similar strata primarily differentiated by the coverage and height of regeneration or 
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understory (Table 3-1). One reason for the confusion may again be the continuous transition between 

both strata (Rocchini et al., 2013). The natural forest development would lead from stratum 5 to 

stratum 6 in the sense of a successional concept (Oliver and Larson, 1996). A second reason for 

confusion might be the partially high density of the dominant canopy which considerably reduces the 

return numbers below. This may result in insufficient LiDAR information about the regeneration and 

understory decreasing the differentiation capacity of specific predictors (Goodwin et al., 2007; Latifi et 

al., 2016). The membership analysis yielded again small proportions of stratum voting probabilities 

below 40% although the shares of classification decisions based on more than 80% probability were 

reduced, especially for stratum 6 (Figure 4-5). This is interpreted an increasing vote uncertainty and 

subsequently rising confusion potential. But most of the observations were still classified by clear votes 

with probabilities above 60%. Falkowski et al. (2009) reported more severe classification confusion 

between their strata closed stem exclusion (comparable to stratum 5) and mature multi-story 

(comparable to stratum 6). In this context, the differentiation of stratum 5 and stratum 6 proved as 

successful and their classification results can be summarized as accurate. 

The most critical confusion occurred between the multi-storied strata 4 and 7. Due to their small 

observation numbers in the training set the estimated OOB accuracies are less robust to 

misclassifications. With two observations per stratum in the test set these accuracies are even not 

representative (Congalton and Green, 2009; Foody, 2009). Therefore, their evaluation is of qualitative 

character and is focused to the description of tendencies. Both multi-storied strata showed ecologically 

plausible confusion with structurally related strata or between each other. Stratum 4 observations 

erroneously attributed to stratum 3 or stratum 5 reflect tendencies in biomass accumulation whereas 

multi-story strata are supposed to show homogeneous biomass distribution by definition (Table 3-1). 

Stratum 7 confusion with stratum 6 indicates weak representation of mid-dimensional trees. 

Accordingly, both multi-storied strata showed the highest proportion of the lowest membership 

probability interval. Stratum decisions with probabilities above 80% were the small minority  

(Figure 4-5). Therefore, difficulties by the classification of multi-storied strata are proven. This is in line 

with recent results of Valbuena et al. (2016). They reported high confusion of a multi-layered 

regeneration stand stratum which is comparable to stratum 4. Falkowski et al. (2009) even aggregated a 

multi-story and a single-story stratum to reduce the high rate of misclassification of their stratum mature 

multi-story. Under consideration of the compared studies and the described deficiencies in the present 

study, the classification of stratum 4 and stratum 7 can be evaluated as satisfactory.  

In conclusion, the levels of the UAs and PAs are on average high for strata of representative observation 

numbers. All misclassifications occurred between strata of plausible structural transitions. The stratum-

wise membership results are in line with the results of the confusion matrices, especially those of the 

OOB estimated matrix. The commonly recommended request of relatively even levels of accuracy for 

all strata was widely attained (Foody, 2002). Again, the confusion between stratum 4 and stratum 7 led 
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to missing this target. Therefore, the per stratum assessment confirms accurate classification results with 

constraints for multi-story strata. 

5.2.3 Spatial distribution 

Classification maps of forest structures published in the expert report on the foundation of the BFNP 

(PricewaterhouseCoopers & ö:konzept, 2013) offer a basis for large-scale spatial comparison of the 

presented classification result (Figure 4-4 and Table 4-3). As they are available only as geographically 

non-referenced graphics, the further evaluations base on thorough visual interpretations. The expertise 

maps were created based on a digital surface model with a resolution of 1 m2 derived from stereoscopic 

aerial images of the year 2009. Although this report referred to slightly different borderlines for potential 

national park areas, large parts are identical (PricewaterhouseCoopers & ö:konzept, 2013). Considering 

the different methodologies, stratifications and the spatial inaccuracy the following comparisons should 

not be understood as referencing. However, the interpretation gives indications about patterns and 

classified area proportions which are reasonably to discuss. 

The combination of stratum 5 and stratum 6 revealed large coherent areas which are fairly congruent 

with the comparable units beginning optimal phase and optimal phase of the expert report 

(PricewaterhouseCoopers & ö:konzept, 2013). In addition, the covered area of the strata 5 and 6 

summarized to a share of 40.7% in the present study whereas the comparative strata covered 35.1%. 

Both underlines the importance of these strata within the present forest structure stratification. 

Stratum 2 and Stratum 3 built the second group of coherent structures. Besides the heathland zones a lot 

of wind disturbance areas, mostly created by the hurricane Lothar at the end of the year 1999, were 

classified as gaps and thickets in the present study. Stratum 2 and stratum 3 show congruence with the 

summarily comparable strata opening, beginning regeneration, thicket and beginning pole wood in the 

expertise. In the present study both strata covered 40.0% of the BFNP whereas the four compared strata 

comprised 34.0% with respect to the surveyed area of the expert report (PricewaterhouseCoopers & 

ö:konzept, 2013). Therefore, these low vegetated strata represent the second very important group of 

forest structures. 

Grid cells attributed to the remaining strata of the present study were mostly loosely spread across the 

BFNP as well as the remaining strata of the expert report. Thus, further detailed spatial comparison was 

impossible and only the character of distribution can be in general described as similar. However, 

comparisons of stratum 1 grid-cells and a high-resolution aerial image of the entire study area proves 

their classification exclusively to patches free of woody vegetation. In addition, a proportional area of 

less than 1% confirmes the intention of introducing as a filling stratum for low vegetated areas avoiding 

competition with the forested strata. The detailed visual analysis of the multi-story strata provided some 

clear, well interpretable patterns. Stratum 7 occurred frequently next to stratum 6 which is reasonable 

due to the at least partially high dimensions of comprised trees in both strata. The area proportion of 



Discussion 

52 

stratum 7 was 4.3% whereas comparable structures of the expert report (selection phase and old-growth 

forests) summarized to 4.5%. Finally, grid cells attributed as stratum 4 frequently linked strata of lower 

and higher vegetation height or they traced borders of higher strata to forest roads and open areas. These 

occurrences are reasonable with respect to possible forest structures at transition zones between height 

differing forest stands as well as at forest edges (Oliver and Larson, 1996).  

In conclusion, the obtained classification seems to be consistent, although the comparative analysis 

based only on visual comparisons of structurally similar, but not identical strata. The qualitative spatial 

analysis yields reasonable distributions of all strata whereas quantitative comparisons of covered areas 

per stratum show classifications of adequate proportions. 

5.3 Classification post-processing 

Loosely spread pixels in large-scale remote sensing classification maps are commonly interpreted as 

noise or salt-and-pepper effect disturbing coherent area mapping. In these cases, moving window filters 

are mostly used to replace the noise pixels by the majority value of the neighbouring pixels (Lillesand 

et al., 2015). In the present study, no filtering was applied due to the following argumentation. A small-

scale classification grid with a cell size of 20 m x 20 m was determined to classify mosaic forest patterns. 

Those will gain in importance with progressive dissolution of large, coherent areas of homogeneous 

forest structure by gap dynamic processes under protection of natural forest development (Oliver and 

Larson, 1996; Scherzinger, 1997; Brumelis et al., 2011). Shugart et al. (2010) stated that grid-cell sizes 

of 0.1 ha or less are optimal to display forest dynamics seeking nonequilibrium which is the central 

objective of this study and the future forest structure monitoring built upon. If a moving window filter 

would have been applied, the visible grid resolution would indeed have remained at 20 m x 20 m. 

However, the effective resolution would have shifted, because of increased area of influence on the 

attribution. In case of a 3 x 3 or 5 x 5 window filter the extent determining the stratum of one grid-cell 

would get increased to 60 m x 60 m or 100 m x 100 m. However, cell sizes of approx. 1 ha and above 

are assigned to be suitable for capturing parameters of forest dynamics in equilibrium whereas those 

between 0.1 ha and 1 ha are not recommended due to their intermediate size (Shugart et al., 2010). 

Therefore, the application of a moving window filters contradicts the mapping of mosaic forest structural 

development and should be refrained from further forest structure monitoring approaches. 

In the post-processing deciduous dominated forest stands and specific non-forested sites were excluded 

(Figure 4-4). The latter comprised for example main roads whereas forest roads were not masked after 

careful consideration. From a formal point of view forest roads are unvegetated areas and had to be 

excluded from the classification. On the other hand, forest roads do not substantially differ from open 

vegetated areas like meadows with respect to their vertical and horizontal LiDAR return distribution. 

Therefore, entire forest road pixels were expected to be classified as openings. However, in most of the 

cases grid-cells would have captured border situations with forests. Depending on the impact of the tree 
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structures these pixels are expected to be probably classified as gaps or low- to mid-dimensional multi-

story. In rare cases, other classification would be conceivable as well. All these possible structures occur 

at forest edges to meadows as well, which were regularly classified. In combination with the planned 

closing of approx. two thirds of forest roads by the BFNP administration (personal communication Birk, 

S., 2017), the grid-cells that are forest road affected aren’t finally masked in the classification. Allowing 

natural dynamics to reshape these open sites will lead to regrowth of forests in the future.  

A comprehensive forest structure monitoring should take these developments into account. In addition, 

the regrowth on forest roads under natural dynamics might possibly be a specific field of interest with 

respect to renaturation of intensively managed forests. 

5.4 Forest structure stratification scheme 

The summary of chapter 5.2.1 and 5.2.2 indicates that the presented stratification scheme is generally a 

reasonable basis for the classification of the forest structures in the BFNP. The low vegetated strata 1 to 

3 were predicted with high accuracies and classified by mostly clear votes across the study area. Their 

ecological differentiation proved as reasonable for classification purpose and therefore adjustments in 

stratum definitions are not indicated and recommended. 

The strata 5 and 6 showed slightly lower classification accuracies and on average reduced vote 

probability. A rise in stratum specification to refine the distinguishability of both strata don’t seem to be 

achievable due to the clear ecological differentiation criterion of absence or presence of regeneration 

and understory and due to the sufficient number of well-labelled observations. Merging both strata to 

reduce classification errors as conducted with comparable strata by Falkowski et al. (2009) seems to be 

not recommendable. On the one hand, the confusion between stratum 5 and stratum 6 was less severe in 

the present study than reported by Falkowski et al. (2009) for structurally comparable strata. 

Furthermore, keeping them distinct preserves stratum 6, the only stratum with quite dense regeneration 

or understory under a dominating canopy, which is an important factor in the ecological assessment of 

forested ecosystems (Martinuzzi et al., 2009; Wing et al., 2012).  In conclusion, the error rates can be 

evaluated as acceptable in comparison to the potential loss of information resulting from stratum 

aggregation. Continuation of separated strata 5 and 6 is clearly recommended. 

Considerably reduced performance was shown by the classification the multi-story strata 4 and 7 under 

the restriction of low observation numbers. Therefore, the aggregation of both multi-story strata might 

be a possibility to overcome the limitation of underrepresentation and to potentially rise the classification 

accuracy. On the other hand, multi-storied forest structures are a key indicator for forest naturalness 

(Oliver and Larson, 1996; Brumelis et al., 2011). At the time of the introduction of a monitoring system 

a generalization by the aggregation of strata would neglect potential forest structure changes under 

natural dynamics, because the dissolution of silvicultural shaped forests will increase inhomogeneous, 

multi-storied structures of different scales in the BFNP (Oliver and Larson, 1996; Pricewaterhouse 
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Coopers & ö:konzept, 2013). Thus, separated strata covering different stages of multi-storied forest 

structures are supposed to be essential for forest structure monitoring. For this reason, future 

enhancement in identification and acquisition of additional reference plots is recommended to broaden 

the basis for model training and to subsequently refine the multi-story characteristic within the 

classification process, instead of stratum aggregation (Congalton and Green, 2009; Foody, 2009). 

Additionally, further discriminatory information could resolve interclass confusion of multi-storied 

strata. The development of specific multi-story LiDAR metrics and the involvement of additional remote 

sensing data might be possible approaches to increase the differentiation capacity.  

At present the forest structures of the BFNP widely represent relatively young forests (Pricewaterhouse 

Coopers & ö:konzept, 2013). An increase of tree dimensions with respect to DBH, crown diameter, and 

height are to be expected under protection of natural dynamics (Oliver and Larson, 1996; Roloff, 2010). 

Simultaneously senescence and decomposition will rise their impact with the potential of creating multi-

story structures (Oliver and Larson, 1996). An expansion of the stratification scheme (Table 3-1) by an 

additional stratum accounting for multi-story forest structures including trees of very large dimensions 

will be required under these circumstances. This is only one example of possible future changes affecting 

the stratification scheme. Indeed, at least the strata 4 to 7 will be influenced by an enlarged tree 

dimension range. Furthermore, new strata may become reasonable or necessary to cover future forest 

structures. Therefore, the suitability of the stratification must be reviewed periodically to make timely 

adjustments. 

On the basis of a crisp stratification scheme, the recognised difficulties in stratifying forest structures 

and recorded confusions were expectable considering the fundamental challenge to divide gradual 

variability of information into discrete classes of a hard classification (Rocchini et al., 2013). Soft or 

fuzzy classification approaches were discussed as an alternative to cope with the continuity of nature 

and remote sensing information (Wang, 1990; Foody, 1999; Xie et al., 2008). First practical applications 

were demonstrated (Benz et al., 2004) but besides the recognition of their potential and occasional 

ecological applications the deployment of this alternative is still limited (Li et al., 2017). One application 

in the field of supervised forest classification was reported by Zhang et al. (2004). Compared to a hard 

classification, they gained higher accuracies with fuzzy habitat classifications and linear discriminant 

analysis. But their results can only be an indication for potential applicability in the forest monitoring 

of the BFNP due to the large methodological differences.  

In conclusion, the presented stratification scheme divides the current forest structure of the BFNP in six 

meaningful forested strata accompanied by an open stratum. The study has proven that it is a reliable, 

initial basis for ecological long-term monitoring which is consistent with the results of Falkowski et al. 

(2009). In addition, the consideration of membership probabilities mitigated the drawbacks of hard 

boundaries considering the continuity of natural structures. By this an applicable and well-balanced 

approach for forest stratification is presented. 
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5.5 LiDAR predictors 

5.5.1 Predictor selection and correlation 

The recursive feature elimination achieved a considerable predictor reduction from 58 to 13 predictors 

(Figure 4-1). In accordance with the well comparable study of Falkowski et al. (2009) the ranking of 

predictor importance was dominated by density and height related metrics (Figure 4-2). However, the 

density metrics in the present study focused on low vegetation heights whereas overall canopy density 

yielded the highest variable importance in Falkowski et al. (2009). Mean and median height were listed 

in both studies as important predictors. LiDAR metrics characterising the vertical return distribution 

were only ranked in the present study. 

The higher variability of predictors in the present study is probably caused by the selection of 13 metrics 

in comparison to 8 and 5 predictors for the respective seven- and six-stratum scheme of Falkowski et al. 

(2009). The effective importance of all 13 predictors for the classification model can be at least 

questioned considering their pairwise correlation matrix. Especially the height related metrics showed 

very strong correlations with correlation coefficients above 0.90 (Figure 4-3). Consequently, further 

predictor reduction might be possible without considerable decrease in classification accuracy. This 

assumption is additionally supported by the ROC values of RF models using less predictors. The ROC 

parameter would only marginally decrease for down to nine predictors (Figure 4-1). Even though 

strongly correlated predictors can contribute additional information for the classification (Guyon and 

Elisseeff, 2003) predictor redundancy can negatively affect the classification accuracy of RF (Gregorutti 

et al., 2017). Therefore, intensified model assessment may lead to an improved balance between 

predictor selection and classification accuracy. 

In summary, RFE reduced the predictors but considerable pairwise correlations remained. This provides 

potential for further improvement with respect to model parsimony, for example by combining recursive 

and non-recursive feature elimination strategies to identify and eliminate irrelevant variables more 

precise (Gregorutti et al., 2017). However, the model results of this study can be evaluated as quite 

robust due to the principal reduction of correlated predictors by RFE and the basic stability of the model 

due to bootstrapping in RF (Gregorutti et al., 2017).  

5.5.2 Differentiation capacity 

The CDP analysis results demonstrate that a predictor set is required to differentiate the strata as no 

single predictor showed distinct CDP characteristics over all strata. Indeed, the predictor 𝑑𝑒𝑛𝑠. ℎ𝑙]2,10] 

did reach the highest variable importance but this results mainly from its crucial importance for 

identifying stratum 3 (Figure 4-7). In contrast, its contribution to the classification of the remaining 

forested strata can be interpreted as low. The set of four predictor CDPs collectively yielded further 

indications about the inter-stratum confusion of the final model. Especially the already mentioned weak 

differentiation capacity regarding strata 4 and 7 is underlined by considerable overlaps between CDP 



Discussion 

56 

distributions of different strata. High differentiation capacities of the predictor set can be attributed in 

the cases of the remaining five strata.  

Although nine predictor CDPs have not been analysed the sampling of four predictors of different metric 

groups under consideration of high pairwise predictor correlations suggest basic representativeness. 

Therefore, acquired results and interpretations based on this sample should be transferable to final model 

assessment. However, the analysis of the entire list of important predictors might give additional 

information about potential predictor redundancies after completion of algorithmic selection methods. 

In that way, CDP analysis may offer an additional approach to examine the simplification potential in 

terms of further predictor reduction in the final model. 

5.6 Field observations 

5.6.1 Sampling design 

The 245 plots for field data acquisition representing the forested strata 2 to 7 were selected by a stratified 

sampling design (see chapter 3.4). The sampling based on most recent forest inventory and forest 

management data, various environmental and geographic factors, and LiDAR return projections of 

potential areas. The pre-utilization of LiDAR return projections proved as necessary due to the 

requirement of detecting structurally appropriate plots within reasonable time. Alternative forest 

management data turned out to be too coarse and vague for precise stratification of forest structure areas. 

Consequently, this first sampling phase was stratified but with a purposeful character instead of a 

random one as recommended by Stehman and Czaplewski (1998). The following reduction to 96 well-

labelled observations based on field impressions and field data (see chapter 3.7.2). By this an additional 

non-random aspect was introduced. Thus, the applied sampling approach evolved almost to a non-

probability sampling (Stehman and Czaplewski, 1998; Stehman, 2009). Consequently, the forest 

structure classification is not erroneously in itself, but the classification accuracy, computed by the OOB 

testing or revealed by the prediction of the test observations, cannot be transferred to the final prediction 

without restrictions (Stehman and Czaplewski, 1998; Stehman, 2009).  

In summary, the sampling design deviates from the good practice guidelines for unrestricted accuracy 

assessment by confusion statistics. This deficiency could be mitigated by interpreting the stratum 

membership probabilities as independent and soft performance indicator (Foody, 1999). Similarities 

between both evaluations basically indicate an observation selection of reasonable representativeness.  

5.6.2 Stratum labelling in the field 

The stratum labelling in the field can be a source of classification errors and accuracy bias (Foody, 2002; 

Rocchini et al., 2013). Although forest structure descriptions (Table 3-1) and silhouettes (Figure 3-2) 

set an operating framework for identification, the attribution in the field remained challenging. The 

difficulty in stratum labelling of field observations was reflected by the reduction from 245 potential 
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plots to 96 well-labelled and finally processed plots. This implies, 149 field observations showed strong 

tendencies or were even not attributable to any stratum due to unclear stratum characteristic. One method 

to possibly rise the field attribution rate and foster stratum decisions might be the definition of stratum 

boundaries for further parameters which are simply to measure or reasonably to estimate in the field. In 

the present study, such reference values for comparatively hard stratum differentiation are given for the 

main tree height and the main DBH ranges whereas soft indicators describe vegetation community, 

structural elements and coverage of tree species. Canopy closure or coverage are characterized for 

example as patchy, open, closed or homogeneous which leave a wide scope for interpretation. They 

could alternatively be divided in proportional closure or coverage intervals (Congalton and Green, 

2009). However, numerical estimation of parameters in the field is still subjective and hence the 

labelling of the strata remains sensitive to human interpretation (Congalton and Green, 2009). In 

addition, an increase in numerical stratum criteria can also lead to conflicts which in turn may inhibit 

clear stratum attribution. 

All 245 field observations of the forested strata 2 to 7 are integrated in the comprehensive monitoring 

system of the BFNP (Gärtner et al., 2016). Thereby, additional forest structure parameters will be 

assessed on the plots within the years 2017 and 2019. It seems to be recommendable to analyse the forest 

structure field data at the end of the first monitoring period to identify possible key measures 

differentiating the strata. They may improve stratum membership decisions in case of expanding the 

pool of field observations or in reassessments of existing plots. 

5.7 Study area 

The limitation of the study area to conifer dominated forests was a consequence of underrepresentation 

of deciduous dominated forests and resulting difficulties in finding sufficient observations across all 

strata. Therefore, some areas haven’t been classified, predominantly located in the northern part. In 

addition, focussing on conifer dominated forests is a source for uncertainty of classified grid cells as 

well. Whereas the exclusion of deciduous dominant to equally mixed forests based on the scale of forest 

stands field observations indicated that a noticeable share of scattered grid cells might be dominated by 

groups of deciduous trees within basically coniferous forest stands. This fuzziness is expected to 

increase in the future due to recently conducted, planned and legally required forest management 

fostering admixture species according to the natural tree species composition of the Black Forest 

(Landtag von Baden-Württemberg, 2013; PricewaterhouseCoopers & ö:konzept, 2013; Nationalpark 

Schwarzwald, 2016). Besides silver fir (Abies alba MILL.), beech (Fagus sylvatica L.) is predestined to 

an increase in proportion as it is the characterising deciduous tree of the natural tree species composition 

(PricewaterhouseCoopers & ö:konzept, 2013). Natural dynamics can possibly reinforce this 

development in a more distant future (PricewaterhouseCoopers & ö:konzept, 2013). At least from a 

medium-term perspective, e.g. 15 to 30 years, it seems necessary to expand the remotely sensed forest 

structure monitoring to deciduous and mixed forest areas.  
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As a first step to the integration of deciduous forest structures a comparison can be conducted between 

the classified but subsequently masked, deciduous to equally mixed forest stands and the respective 

forest structures in the field. A spatially referenced and detailed analysis would provide insights about 

the applicability of the presented, on coniferous forests calibrated model to these untrained structures. 

If the results are positive, the current classification model might be operated as an interim approach to 

classify the entire BFNP. Secondly, the model should get retrained on the entire range of structures as 

soon as sufficient observations for one or more strata get identified in deciduous dominated areas and 

corresponding new LiDAR data is available. Following, results of precursor models can be reclassified 

on the old datasets to ensure consistent comparisons between the classifications at different times. 

Inclusion of deciduous training observations will finally lead to a robust classification model for a long-

term monitoring system comprising the complete range of forest structure in the BFNP.
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6 Conclusion and outlook 

Based on a high-resolution data set of the BFNP, the present study aimed to establish a comprehensive 

stratification of forest structures and to accurately classify these strata across the BFNP by considering 

a minimum set of relevant LiDAR predictors. 

The presented stratification scheme proved substantially appropriate and achieved a balanced 

consideration of recent structures and potential structural changes. Confusion between the forested strata 

was ecologically reasonable and mostly of moderate intensity. Only the multi-storied strata require 

enhancement in their differentiation capacity as aggregation of stratum 4 and 7 is not recommended to 

reduce their level of confusion. Additional training observations and multi-story specific LiDAR 

predictors may lead to considerable improvement. In addition, the stratification should not be considered 

concluded. Forest structures establishing by natural dynamics are supposed to lead to the introduction 

of new strata. Furthermore, technological progress may refine structural identification and enable splits 

of presented strata. Finally, the extension of the stratification scheme to deciduous forest structures 

should certainly be sought to cover all types of forest composition in future. 

The final classification model revealed highest importance of density and height related metrics. 

However, high pairwise correlations between numerous final predictors indicated remaining 

redundancies and this stands in conflict with the objective of high model parsimony achievement. 

Assessments of CDPs confirmed the assumption of redundant predictors. Therefore, adjustments of the 

applied recursive feature elimination and further selection approaches can be tested to reduce the 

predictors to an essential set. Irrespective of improvable model parsimony, RF based classification 

approaches proved to be sufficiently robust against correlated predictors. Thus, reliable classification 

results of the presented model can be assumed. 

The applied classification based on hard stratification softened subsequently by membership 

probabilities mitigated drawbacks of solely crisp classifications. Overall OOB accuracy of 81.47% 

confirmed the general applicability on the suggested stratification. Accuracy assessments per stratum 

and concurring stratum membership results revealed divergence between low vegetated, multi-story and 

the remaining strata. However, even the lowest accuracies of the multi-story strata 4 and 7 did neither 

fundamentally question the stratification nor the classification approach itself due to indication of 

sufficient performance. With respect to the future reliability of forest structure monitoring, 

enhancements regarding multi-storied strata are recommended as mentioned above. 

The study presented an overall effective and comprehensive forest structure classification approach to 

initiate and pursue a long-term monitoring in the BFNP. As an optional complement to the area-based 

approach individual tree segmentation can be processed, fully exploiting the potential of LiDAR 

analysis (Heurich, 2008; Reitberger et al., 2009; Latifi et al., 2015). Further information may also be 
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gained by combining LiDAR and optical imagery data. However, scientific studies showed divergent 

results (Dalponte et al., 2008; Latifi et al., 2012; Buddenbaum et al., 2013). 

In addition to the monitoring purpose the classified forest structure map might be useful for a suite of 

different applications in nature conservation practice and research. According to the definition of a 

monitoring, change detection can be processed, beginning from the second ALS campaign in the BFNP. 

Although change detection of forest structure based on LiDAR data has theoretically been mentioned in 

scientific literature (Dees et al., 2012; Wulder et al., 2014) applications are still rare (Frew et al., 2016; 

Song et al., 2016). Especially change detection by comparison of multi-temporal area-based LiDAR 

classifications cannot be found. Therefore, it seems to be recommendable to transfer general good 

practice principles and methods of remote sensing change detection to the forest structure monitoring 

system of the BFNP (Olofsson et al., 2014; Willis, 2015). 

Another direction of pursuing research are habitat analyses or species distribution models with respect 

to forest structural classifications or structural metrics (Guo et al., 2017). Habitat preferences of GPS-

collared animals can be analysed along different temporal scales from diurnal over seasonal to multi-

annual periods by combining GPS-telemetry data and forest structure classification (Melin et al., 2013; 

Ewald et al., 2014; Melin et al., 2016). In this context, a first study about the temporal and spatial habitat 

selection of red deer (Cervus elaphus L.) was conducted in the BFNP based on the presented 

classification (Rauscher, 2017). The assessment of potential habitats of avian species based on LiDAR 

analysis and bird occurrence data is of high potential due to the broad basis of documented bird 

observations (Clawges et al., 2008; Bergen et al., 2009). Specifically, bird species indicative for diverse 

forest structures may attract the focus with respect to structural changes under natural forest dynamics 

(Martinuzzi et al., 2009; Müller et al., 2009; Zellweger et al., 2013). A first habitat model with focus on 

pygmy owl (Glaucidium passerinum L.) and its forest structure requirements was presented by 

Holderried (2016) for the BFNP. Comparable habitat modelling could be applied to further indicator 

species, e.g. capercaillie (Tetrao urogallus L.) and forest beetle assemblages (Müller and Brandl, 2009). 

However, it seems to be recommendable to use standardized forest structure classification to keep 

resulting models spatially comparable. Against the background of the floristic, faunistic and fungal 

species monitoring, initiated in 2017 (Buse et al., 2016), a general species diversity model depending 

on forest structure might be a comprehensive approach for further research based on the presented forest 

structure analysis (Bergen et al., 2009). 

LiDAR remote sensing offers the opportunity to model above-ground biomass in forest ecosystems in 

general (Zolkos et al., 2013) and in conifer dominated forests in particular (Næsset et al., 2013b). For 

this purpose, biomass data can be subsequently collected at the field observation plots to extend the 

current database. Hence, a multi-temporal biomass monitoring could be established according to the 

presented classification to budget changes under natural forest development in the BFNP based on 

repeated LiDAR flight campaigns (Næsset et al., 2013a). Furthermore, biomass modelling and forest 
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structure classifications across the BFNP can build the basis for fuel load quantifications and fire risk 

simulations (Skowronski et al., 2007; González-Olabarria et al., 2012). 

In abiotic fields of research, the forest structure analyses may contribute to hydrologic modelling in the 

BFNP. Forest structure considerably influences snow accumulation and ablation (Varhola et al., 2010; 

Broxton et al., 2015) and is coupled to the evapotranspiration (Mitchell et al., 2012; Ringgaard et al., 

2012; Tang et al., 2017). The presented classification or at least the underlying forest structure metrics 

can support hydrological or micro-meteorological modelling approaches at different scales in the BFNP. 

In conclusion, the introduced forest structure classification fulfils not only the main objective of 

initiating a forest structure monitoring. It opens a broad field of further application in scientific research 

and practical nature conservation. Therefore, it facilitates advancement in documentation, planning, 

management, and assessment of the status and future development of forested ecosystems in the BFNP. 
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Appendix A 

Table A-1  Forest structure LiDAR metrics 

 Metric group    

No. 
Metric 

abbreviation 
Description Data Reference 

 Basic return counts 

1 𝑛  Number of returns data_0 Latifi et al., 2016 

2 𝑛𝑓  Number of first returns data_0_f - 

3 𝑛𝑓 𝑚−2  Number of first returns per m2 data_0_f - 

4 𝑛𝑣𝑒𝑔  Number of vegetation returns data_0.5 - 

5 𝑛𝑐𝑎𝑛  Number of canopy returns data_2 - 

6 𝑛𝑐𝑎𝑛.𝑓   Number of first canopy returns data_2_f Næsset, 2002 

7 𝑛. 𝑡𝑎𝑟𝑚𝑒𝑎𝑛 a Mean number of targets data_0 - 

8 𝑛. 𝑡𝑎𝑟𝑚𝑎𝑥 a Maximum number of targets data_0 - 

 Vertical distribution metrics 

9 ℎ𝑚𝑎𝑥  Maximum height data_0 Falkowski et al., 2009 

10 ℎ𝑝99
𝑓

 a 99th height percentile of first 

returns 

data_0_f - 

11 ℎ𝑚𝑒𝑎𝑛 a c Mean height data_0 Falkowski et al., 2009 

12 ℎ𝑚𝑒𝑎𝑛
𝑣𝑒𝑔

 a Mean height of vegetation data_0.5 - 

13 ℎ𝑚𝑒𝑎𝑛
𝑐𝑎𝑛   Mean height of canopy data_2 - 

14 ℎ𝑚𝑒𝑑 a c Median height data_0 Falkowski et al., 2009 

15 ℎ𝑚𝑒𝑑
𝑣𝑒𝑔

 a Median height of vegetation data_0.5 - 

16 ℎ𝑚𝑒𝑑
𝑐𝑎𝑛   Median height of canopy data_2 - 

17 ℎ𝑚𝑒𝑑.𝑟  Relative median height data_0 Heurich and Thoma, 2008 

18 ℎ𝑚𝑒𝑑.𝑟
𝑣𝑒𝑔

  Relative median height of 

vegetation 

data_0 - 

19 ℎ𝑚𝑒𝑑.𝑟
𝑐𝑎𝑛   Relative median height of 

canopy 

data_0 - 

20 ℎ𝑚𝑒𝑑.𝑟.99
a 

Relative median height (ℎ𝑝99
𝑓

) data_0 & 

data_0_f 

Heurich and Thoma, 2008 

21 ℎ𝑚𝑒𝑑.𝑟.99
𝑣𝑒𝑔

 a Relative median height of 

vegetation (ℎ𝑝99
𝑓

)  

data_0.5 

& data_0 

- 

22 ℎ𝑚𝑒𝑑.𝑟.99
𝑐𝑎𝑛   Relative median height of 

canopy (ℎ𝑝99
𝑓

) 

data_2 & 

data_0 

- 

23 ℎ𝑚𝑜𝑑𝑒
𝑐𝑎𝑛.𝑓   Modal height of first canopy 

returns 

data_2_f Falkowski et al., 2009 
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24 𝑠𝑑 a c Standard deviation of heights data_0 Latifi et al., 2016 

25 𝑠𝑑𝑣𝑒𝑔 a Standard deviation of vegetation 

heights 

data_0.5 - 

26 𝑠𝑑𝑐𝑎𝑛  Standard deviation of canopy 

heights 

data_2 - 

27 𝑣𝑎𝑟 a c Variance of heights data_0 Latifi et al., 2016 

28 𝑣𝑎𝑟𝑣𝑒𝑔 a Variance of vegetation heights data_0.5 - 

29 𝑣𝑎𝑟𝑐𝑎𝑛  Variance of canopy heights data_2 - 

30 𝑐𝑜𝑣 a Coefficient of variation of 

heights 

data_0 Falkowski et al., 2009 

31 𝑐𝑜𝑣𝑣𝑒𝑔  a Coefficient of variation of 

vegetation heights 

data_0.5 - 

32 𝑐𝑜𝑣𝑐𝑎𝑛  Coefficient of variation of 

vegetation heights 

data_2 - 

33 𝑠𝑘𝑒𝑤 a Skewness of heights data_0 Falkowski et al., 2009 

34 𝑠𝑘𝑒𝑤𝑣𝑒𝑔 a c Skewness of vegetation heights  data_0.5 - 

35 𝑠𝑘𝑒𝑤𝑐𝑎𝑛  Skewness of canopy heights data_2 - 

36 𝑘𝑢𝑟𝑡 a b Kurtosis of heights data_0 Falkowski et al., 2009 

37 𝑘𝑢𝑟𝑡𝑣𝑒𝑔 a b Kurtosis of vegetation heights data_0.5 - 

38 𝑘𝑢𝑟𝑡𝑐𝑎𝑛  Kurtosis of canopy heights data_2 - 

 Sectioned vertical distribution metrics 

39-
46 

ℎ𝑝10, … , ℎ𝑝40 & 

ℎ𝑝60, … , ℎ𝑝90 a c 

 

10th to 90th height percentiles 

(median excluded) 

data_0 Heurich and Thoma, 2008 

47 𝑛. ℎ𝑙[0,1]  Number of returns from 0 to 

1 m 

data_0 Falkowski et al., 2009 

48-
52 

𝑛. ℎ𝑙]𝑖,𝑗]  Number of returns within height 

intervals (]i,j] = ]1,2], ]2,10], 

]10, 20], ]20,30] and ]30,60] in 

meter) 

data_0 Falkowski et al., 2009 

53 𝑠𝑑ℎ𝑞1 a Standard deviation of return 

heights between ground and 1st 

height quartile 

data_0 Zellweger et al., 2013 

54 𝑠𝑑ℎ𝑞2 a c Standard deviation of return 

heights between 1st and 2nd 

height quartile 

data_0 Zellweger et al., 2013 

55 𝑠𝑑ℎ𝑞3 a Standard deviation of return 

heights between 2nd and 3rd 

height quartile 

data_0 Zellweger et al., 2013 

56 𝑠𝑑ℎ𝑞4 a Standard deviation of return 

heights between 3rd height 

quartile and maximum height 

data_0 Zellweger et al., 2013 

 Density metrics 

57 𝑑𝑒𝑛𝑠. ℎ𝑙[0,1] 
a Return density between 0 and 

1 m 

data_0 Falkowski et al., 2009 
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58-
62 

𝑑𝑒𝑛𝑠. ℎ𝑙]𝑖,𝑗] 
a c Relative percentage of returns 

within height intervals (]i,j] = 

]1,2], ]2,10], ]10,20], ]20,30] 

and ]30,60] in meter) 

data_0 Falkowski et al., 2009 

63 𝑑𝑒𝑛𝑠. 𝑐𝑎𝑛𝑓 a Absolute canopy density data_0_f 

& 

data_2_f 

Næsset, 2002 

64-
72 

𝑑𝑒𝑛𝑠. 𝑐𝑎𝑛ℎ𝑝𝑖

𝑓
 a Canopy density above 

respective height percentile with 

i = 10th, …, 90th 

data_0_f 

& 

data_2_f 

Næsset, 2002 

73 𝑝𝑟. 𝑐𝑎𝑛 a Penetration rate canopy data_0 Latifi et al., 2016 

74 𝑝𝑟. 𝑠ℎ𝑟𝑢𝑏 a Penetration rate shrub layer data_0 Latifi et al., 2016 

75 𝑝𝑟. 𝑢𝑠𝑡 a c Penetration rate understory data_0 Latifi et al., 2016 

76 𝑝𝑟. 𝑢𝑙 a Penetration rate upper layer data_0 Heurich and Thoma, 2008 

77 𝑝𝑟. 𝑖𝑙 a Penetration rate intermediate 

layer 

data_0 Heurich and Thoma, 2008 

78 𝑝𝑟. 𝑙𝑙 a Penetration rate lower layer  data_0 Heurich and Thoma, 2008 

79 𝑝𝑟. 𝑡𝑜𝑡 a Total penetration rate data_0 Heurich and Thoma, 2008 

 3D return distribution metrics 

80 𝑜𝑔 a Number of open gap voxels data_0.5 Lefsky et al., 1999; Coops 

et al., 2007 

81 𝑐𝑔 a c Number of closed gap voxels data_0.5 Lefsky et al., 1999; Coops 

et al., 2007 

82 𝑒𝑧 a Number of euphotic zone voxels data_0.5 Lefsky et al., 1999; Coops 

et al., 2007 

83 𝑜𝑧  Number of oligophotic zone 

voxels 

data_0.5 Lefsky et al., 1999; Coops 

et al., 2007 

84 𝑜𝑔𝑟𝑒𝑙 
a Relative percentage of open gap 

voxels 

data_0.5 - 

85 𝑐𝑔𝑟𝑒𝑙 
a Relative percentage of closed 

gap voxels 

data_0.5 - 

86 𝑒𝑧𝑟𝑒𝑙 
a Relative percentage of euphotic 

zone voxels 

data_0.5 - 

87 𝑜𝑧𝑟𝑒𝑙
  Relative percentage of 

oligophotic zone voxels 

data_0.5 - 

a Preselected metrics, b excluded after missForest imputation, c partly or fully selected by RFE (see chapter 4.1) 
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Figure B-1 Conditional density plots per stratum for 𝑠𝑑ℎ𝑞2 
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Figure B-2 Conditional density plots per stratum for ℎ𝑚𝑒𝑑 
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Figure B-3 Conditional density plots per stratum for 𝑐𝑔 
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Appendix C 

Content of the accompanying DVD 

Observations 

➢ Specific observation plot folders 

o GPS centre coordinate measurement data (folder: etrex) 

o Panorama photo at plot centre (folder: Pano) 

o LiDAR raw data per circular and squared plot base (folder: RawData_LiDAR) 

o Various graphics based on plot data (folder: Graphics) 

o Field data (file: PlotXXX_Aufnahmebogen.xls) 

➢ Overview of plot coordinates and strata (file: Plots_Str1-7_MA.csv) 

Predictors 

➢ Non-imputed LiDAR metrics data of all potential 260 training and test plots  

(file: LiDARmetrics_traintest.csv) 

➢ Imputed LiDAR metrics data of selected 111 training and test plots  

(file: LiDARmetrics_traintest_MA_imputed.csv) 

➢  Non-imputed LiDAR metrics data of the BFNP grid with water areas excluded  

(file: LiDARmetrics_BFNP_exWater.csv) 

➢ Imputed, predictor reduced LiDAR metrics data of the BFNP grid with water areas 

excluded (file: LiDARmetrics_BFNP_exWater.csv) 

R_codes 

➢ Calculation of LiDAR metrics for the BFNP grid (file: LiDARmetrics_grid.R); 

not executable as the entire LiDAR data set of the BFNP is not appended 

➢ Calculation of LiDAR metrics for the training and test plots  

(file: LiDARmetrics_traintest.R); 

executable on the LiDAR raw data per plot (folder: Observations\RawData_LiDAR) 

➢ Data preparation and RF classification (file: DataPreparation_RFClassification.R) 

executable on imputed LiDAR metrics data (folder: Predictors) 

➢ R-workspace after final classification (file: Workspace_FinalClass.RData) 

Results 

➢ Imputed, predictor reduced, and predicted LiDAR metrics data of the BFNP grid with water 

areas excluded (file: LiDARmetrics_BFNP_exWater_imputed_predicted.csv) 

➢ Final classification raster separated for the northern and southern part of the BFNP for GIS 

(files: Classification_Coniferous_North.tif, Classification_Coniferous_South.tif) 

➢ Membership probability raster for GIS (file: MembershipProbabilityRaster.tif) 


