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Abstract

The influence of drylands on global carbon variability is often underestimated. In semi-arid

ecosystems, the seasonal distribution of precipitation is a strong governing factor of vegetation.

The Caatinga seasonally dry tropical forest (SDTF) is situated at the intersection of several large-

scale atmospheric systems, that lead to highly heterogeneous rainfall patterns in space and time.

The exact areas of the influence zones are unknown, yet of critical importance for water avail-

ability throughout the region. The aim of this study is to examine the spatiotemporal dynamics

of precipitation and vegetation and their long-term developments in the Caatinga. The analysis

was based on remotely sensed fraction of absorbed photosynthetic active radiation (FPAR) and

Gauge-based precipitation data. The spatial extent of the influence of the atmospheric systems,

which source Caatinga precipitation was captured by ”Partitioning around Medoids” (PAM)

clustering. The temporal characteristics of the precipitation regimes were assessed with a wide

range of metrics, including descriptive statistics, phenological parameters, time series structural

patterns and long-term trends. Additionally, the strength of local precipitation-vegetation was

captured by non-parametric Spearman correlation and lagged linear regressions. The study con-

cluded that three major influence zones shape the dynamics of precipitation and vegetation in

the Caatinga. It was shown that the precipitation regimes extensively shape Caatinga vegetation

distribution and variability. FPAR forms distinct macroecological units that follow the dynam-

ics of the precipitation regimes, independent of local geologic, edaphic and floristic settings or

anthropogenic disturbances. Long-term changes in precipitation were negative and limited to a

small proportion of the region. Trends in vegetation were not linked to precipitation and match

previous research on atmospheric CO2 fertilization effects in semi-arid ecosystems. The findings

illustrate the links between seasonal rainfall distribution and Caatinga land surface phenology.

This study highlights the importance of understanding the characteristics of local precipitation

regimes for semi-arid ecosystems.
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1 Introduction

Climate change is globally affecting the environment across all scales. The repercussions

range from increasing temperatures, rising atmospheric CO2 concentrations and UV intensity,

to changes in the frequency and magnitude of rainfall events, as well as extreme events such

as heatwaves, droughts and floods (Allen et al., 2014). The effects of droughts and tempera-

ture anomalies on plant mortality have already been observed globally (Allen et al., 2010) and

changing average climate conditions are expected to affect the primary productivity of terrestrial

vegetation and plant distribution patterns (De Keersmaecker et al., 2015). Besides the pressure

on ecosystems, this may have major socio-economic implications, such as drought-related losses

of harvests or increased storm hazards (Field et al., 2012).

Vegetation productivity is an essential variable in ecosystem functioning (Reid et al., 2005). Pri-

mary production provides the energetic basis and material substrate for nearly all heterotrophic

organisms and is a crucial component of the many services that ecosystems provide (Sessa and

Dolman, 2008; Hollmann et al., 2013). Temporal variability of primary production has important

consequences for overall ecosystem functioning, and for the stability and value of production-

derived ecosystem services (Haberl et al., 2014; Maurer et al., 2020).

Terrestrial primary production is a key regulator of the global carbon cycle (Melillo et al.,

1993). Ecosystems can act as a carbon sink when their carbon fixation exceeds their carbon

losses. Fixation takes place in photosynthetic processes of plants, while carbon losses occur in

auto- and heterotrophic respiration or by natural or human disturbances (Kirschbaum et al.,

2001). The global biomes differ in their contributions to global primary production and influence

on the global carbon budget. While the mean annual sink is dominated by highly productive

ecosystems (e.g. tropical forests), trends and interannual variability of the sink are dominated

by semi-arid ecosystems. The carbon balance of semi-arid ecosystems is strongly associated with

circulation-driven variability in precipitation and temperatures (Ahlström et al., 2015; Maurer

et al., 2020). Therefore, continental-scale or even regional-scale changes in climate can impact

the global carbon budget by shifting regional carbon balances from sinks to sources or opposite

(Davidson et al., 2012; Poulter et al., 2014; Brienen et al., 2015). Quantifying the variability

of primary production and the sensitivity to large-scale climatic variation is essential to predict

interannual to decadal variations of the global carbon cycle (Ahlström et al., 2015) and for

understanding how the global carbon cycle will respond to future climatic conditions (Maurer

et al., 2020).
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1 Introduction

Semi-arid regions have been the subject of only few targeted studies that place their impor-

tance in a global context (Ahlström et al., 2015). Dryland biomes cover approximately 42 % of

the global land surface (Sorensen, 2007) and support approximately 30% of the world’s popu-

lation (Group, 2011) with livestock and crops for global food production (Adeel et al., 2005).

These biomes contain 7 of the 25 global biodiversity hotspots (Myers et al., 2000) and more

than half of all bird and mammal species (Davies et al., 2012; Gudka et al., 2014). They are

some of the most threatened, yet disregarded ecosystems (Janzen, 1988; Durant et al., 2012)

and under pressure not only due to climate change but also human activity (Miles et al., 2006;

Change, 2007). Their large proportion of global land surfaces and highly variable carbon stocks

make dryland ecosystems pivotal for accounting of the global carbon balance, despite their low

average carbon stock per area unit (Brandt et al., 2018). Drylands are characterized by a lim-

ited availability of water (Cherlet et al., 2018). These ecosystems can exhibit increased carbon

uptake in anomalously wet years, which induce a rapid growth response of drought-adapted

biota (Huxman et al., 2004; Chen et al., 2009). Due to the asymmetry in both the interannual

distribution of rainfall and the response of the Gross Primary Productivity (GPP), this response

was estimated to be as half as big as the contribution from the CO2 fertilization effect during

1990-2013 (Haverd et al., 2017). Within drylands tropical dry forests act as an important car-

bon sink (Malhi, 2012). Observational data on African dryland vegetation carbon stocks (Zhang

et al., 2018) suggests that models currently may underestimate the role of dryland savannahs as

carbon sinks and sources (Poulter et al., 2014; Ahlström et al., 2015). Further research on the

influence of semi-arid ecosystems on the global carbon budget is needed (Ahlström et al., 2015;

Haverd et al., 2017; Maurer et al., 2020).

Among dry forests, the neotropic realm and their largest contributor, the Caatinga season-

ally dry tropical forest (SDTF), are particularly underrepresented, although research interest

and numbers of publications are rising (da Silva et al., 2017; de Queiroz et al., 2017). Caatinga

is the name of the ecosystem and of a well defined social region. It is located in the north east of

Brazil (S 3° - S 17°; W 35° - W 45°) and covers an area of approximately 913 000 km2. Caatinga

vegetation-drought dynamics are reported to have a significant influence on the global carbon

budget (Pereira et al., 2014).

Home to approximately 30 million people, it is the most densely populated semiarid region in

the world (Santos et al., 2014), while having the lowest development indicators of Brazil (Leal

et al., 2005; da Silva and Barbosa, 2017), pushing the region beyond carrying capacity (da Silva

et al., 2017). Subsistence farming, together with wood extraction, livestock grazing and rainfed

agriculture is the prevalent source of income, making the local livelihood vulnerable to climate

variability (Sun et al., 2007; Justino et al., 2013). Major crops are maize and beans (Marengo

2



et al., 2018), which have already been observed to be affected by changes in temperature and

precipitation regimes in the tropics, and it is expected that these impacts will further increase

(Borrell et al., 2020). The climatic changes projected to occur in the future may cause signif-

icant impacts in South America in the present century. These impacts will be more intense in

tropical regions specifically the Brazilian Amazon and Northeast Brazil (NEB) (Baettig et al.,

2007; Metz et al., n.d.; Althoff et al., 2016). The Caatinga is expected to be most vulnerable

due to the high variation in water availability and the current economic situation, potentially

leading to a social crisis (Barbosa et al., 2006; Marengo et al., 2014).

Caatinga vegetation is extremely heteorogenous and ranges from open cactus shrub on rocky out-

crops to semi-decidous forests and forms the largest neotropical SDTF and woodland (SDTFW,

sensu Gaussen (1973); de Queiroz et al. (2017)). The vegetation is dominated by small-leaved,

thorny trees as well as many succulents and therophitic herbs. Most of the woody species are

deciduous (de Queiroz et al., 2017) and a huge variety of anatomical, morphological and ecophys-

iological features related to water use efficiency and safe growth of the plants exist (Machado

et al., 1997; Mansur and Barbosa, 2000; da Silva et al., 2004; Souza et al., 2010; Figueiredo

et al., 2012; de Lima et al., 2012). Especially different forms of deciduousness, thought to have

evolved as an adaptation to seasonal drought in the tropics (Axelrod, 1966), are a key feature

of Caatinga woody vegetation (de Queiroz et al., 2017; Mooney et al., 1995; Eva et al., 2004;

Bowman and Prior, 2005). They are strongly favoured in regions, where the metabolic cost

of capturing nutrients is small and there is a distinct growing season (Givnish, 2002; Ruggiero

et al., 2002). In contrast, evergreen species are expected in areas with infertile soils, uniform dis-

tribution of annual rainfall and climatic unpredictability (Bowman and Prior, 2005; Ouédraogo

et al., 2016).

An important aspect of the Caatinga is the very heterogeneous climatic setting and locally

different sources of precipitation. The region is positioned at the intersection of large-scale at-

mospheric systems that affect the area with varying intensities at different times throughout the

year (Pezzi and Cavalcanti, 2001; Marengo et al., 2018; Gomes et al., 2019). Three major in-

fluence zones have been suggested, which develop distinct precipitation regimes. These systems

divide the region into a northern, a central-eastern and a south-western area (Brahmananda Rao

et al., 1993; de Andrade et al., 2017).

The high socio-economic vulnerability of the Caatinga, the complex climatological setting and

the valuable wildlife with high rates of endemism (Leal et al., 2005; Queiroz et al., 2015;

de Queiroz et al., 2017) demand a better understanding of the precipitation regimes and a

spatially explicit delineation of their major influence zones. Besides the strong governing influ-

ence of mean annual precipitation (MAP) on Caatinga productivity and diversity (Rito et al.,

2017), other aspects of rainfall dynamics can have far reaching implications for Caatinga vegeta-

3



1 Introduction

tion. Seasonality, or the severity of the dry season and the resulting drought stress can influence

ecosystem productivity, land surface phenology, tree cover and trait distribution in dry tropi-

cal forests (Aragão et al., 2007; Chen et al., 2009; Ouédraogo et al., 2016; Zhang et al., 2018).

Commonly measured plant traits, utilised for predicting plant growth, net primary production

(NPP) dynamics or the response of ecosystems to climate change (Dı́az and Cabido, 1997; Dı́az

et al., 2016; Reich, 2012; Suding et al., 2008) often do not align well with gradients of water

availability (Wright et al., 2004). These weak trait-precipitation relationships were attributed to

an improper selection of traits related to hydraulic functioning (Griffin-Nolan et al., 2018). On

the other hand, Schwartz et al. (2020) reported that, although ecologists have long recognized

correlations between water availability and species distributions (Gentry, 1988), they usually

only characterized rainfall regimes with parameters such as MAP or simple dry season metrics.

The incomplete consideration of the wide range of environmental and especially precipitation

characteristics, sometimes referred to as ”multi-dimensional climate space” (Schwartz et al.,

2020), might add to the weak trait-precipitation correlation reported by Wright et al. (2004);

Griffin-Nolan et al. (2018). This gap calls for spatially explicit characterizations of precipitation

dynamics and an evaluation of local precipitation regimes beyond MAP. To understand and

anticipate local patterns of water availability throughout the year, the temporal characteristics

of the individual regimes and their long-term developments have to be assessed. In addition,

the effects on land surface phenology, as well as the strength of the vegetation-precipitation cou-

pling could yield important information for policy makers, infrastructure planning, conservation

efforts and the design of ecological studies.

4



This study aimed to explicitly delineate the influence zones of the precipitation sourcing atmo-

spheric systems of the Caatinga and their temporal characteristics. Subsequently, their effects

on local vegetation dynamics were determined by analyzing remote sensing data .

The following questions where addressed:

1. Precipitation

a) Where are the true influence zones of the different precipitation sourcing systems?

b) What are the spatiotemporal characteristics of the precipitation regimes?

c) Are there long-term changes in the amount of precipitation?

2. Vegetation

a) How strong is the link between observed precipitation patterns and vegetation dy-

namics?

b) Is it possible to identify macroecological units of Caatinga vegetation that follow the

precipitation regimes?

c) Are there long-term changes in vegetation productivity?

To facilitate this, precipitation gauge data was clustered. As a proxy for vegetation, the fraction

of absorbed photosynthetic active radiation (FPAR) was used. Different temporal parameters,

assessing long-term conditions, variability, seasonal and phenological patterns, time series be-

haviour and trends where derived for both precipitation and vegetation data. The results were

divided into subgroups based on the preceding clustering and compared statistically.

5



2 Materials and Methods

The following sections will present the study area and a review of the atmospheric systems

influencing Caatinga precipitation (2.1 & 2.1). Subsequently, the acquisition of the data and

preprocessing (2.2), clustering (2.3), the spatiotemporal analyses (2.4), the correlation analyses

(2.5) and the statistical tests (2.6) will be presented.

2.1 Study Area

The extent of forest cover in dryland biomes is disputed (Bastin et al., 2017; Brandt et al., 2020),

as is the exact extent of the Caatinga (da Silva et al., 2017). This study follows the definition

of the ”Instituto Brasileiro de Geografia e Estat́ıstica” (IBGE, Brazilian Institute of Geography

and Statistics) and the Ministério do Meio Ambiente (MMA, Ministry of the Environment), who

include the Campo Maior area in the north-west and exclude the São Francisco-Gurgéia along

the south-western border. The Caatinga is situated in the federal states Ceará, Rio Grande do

Norte, Piaúı, Paráıba, Pernambuco, Alagoas, Sergipe and Bahia.

Geology and Soils

Around 70 % of Caatinga area is based on crystalline basements and 30% to sedimentary basins

that form flattened surfaces between 300 m and 500 m above sea level, which are interspersed

with some isolated mountain ranges and high-altitude plateaus up to 1000 m, most prominently

the Chapada Diamantina and the Chapada do Araripe (Sampaio, 1995). The geological settings

lead to distinct floras with different plant assemblages, diversity and life-form spectra (de Queiroz

et al., 2017). The region has different soil types, ranging from rocky, or sandy areas to relatively

fertile and profound areas, especially along rivers (da Silva et al., 2017). Caatinga soils are

generally not very fertile and are low in soil organic carbon (Schulz et al., 2016). Due to

the prevailing crystalline geological basements, water reserves originate from rainfall that is

concentrated over a few months of the year, along with intermittent surface runoff, amplifying

the importance of precipitation regimes for water availability (de Andrade et al., 2017; Farrick

and Branfireun, 2015). In many areas, soil erosion and salinisation lead to degraded soils (Santos

et al., 2014). Several studies have documented that over 90 % of the region has a moderate to

high risk of desertification due to intense land use (Vieira et al., 2015).

6



Figure 2.1: Study area and political boundaries of the federal states; shaded areas: predominant
precipitation sources and approximate spatial extents of the precipitation regimes
(de Andrade et al., 2017) (note: different borders in the North- and Southwest
compared to this study)
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2.1 Study Area

Regional Climate Systems

To understand the complex precipitation and vegetation dynamics of the Caatinga, it is crucial

to comprehend the influences of the different large-scale atmospheric systems. Fig. 2.1 shows a

schematic representation of the Caatinga and the influence zones of the prevailing precipitation

sourcing systems. The northern area can be attributed to the innertropical convergence zone

(ITCZ) (Santos e Silva et al., 2014). The wet season starts around January and is caused by

frontal systems (Ferreira and da Silva Mello, 2005) and the begin of the southward migration

of the ITCZ (Torres and Ferreira, 2011; Hastenrath, 2012; Guerreiro et al., 2013). The ITCZ

location and its seasonal latitudinal migration is mainly controlled by a delayed feedback of

tropical Atlantic and Pacific sea surface tempperature (SST) variability (Hastenrath and Greis-

char, 1993; Moncunill, 2006; Hastenrath, 2012; Rodrigues and McPhaden, 2014; Marengo et al.,

2018). When Atlantic SST favour northeast trade winds accompanied by a weakening of the

southeast trade winds, the ITCZ migrates to the Southern Hemisphere. This results in increased

precipitation, especially during March and April (Hastenrath, 2012). The precipitation of these

months can account for over 50% of the total annual precipitation in the northern Caatinga

(de Andrade et al., 2016). The end of the wet season is determined by the return of the ITCZ

to the Northern Hemisphere (Guerreiro et al., 2013). The ITCZ control on precipitation leads

to a highly predictable seasonal climate in the northern Caatinga, which allows the forecast of

large climate events with a leading time of a few months (Hastenrath, 1990; Hastenrath and

Greischar, 1993; Hastenrath, 2012; Marengo et al., 2013, 2016, 2018; Giannini et al., 2004; Nobre

et al., 2006; Rodrigues and McPhaden, 2014; Hounsou-Gbo et al., 2016). Although the ITCZ

mechanism is long known, its influence zone is unclear (Sun et al., 2007).

Precipitation of the eastern region of the Caatinga is induced by a combination of local convec-

tion, the sea breeze and easterly wave disturbances (EWD). EWDs are disturbances that move

westward with the trade winds that are associated with the subtropical ridges (Gomes et al.,

2015). They account for at least 60% of the total rainfall over the east coast of Northeast Brazil

(NEB) (Gomes et al., 2019). The southeasterly winds blow perpendicular to the coast and are

modulated in strength and direction by the subtropical high in the South Atlantic (Kousky,

1979; Brahmananda Rao et al., 1993; Kayano, 2003; Torres and Ferreira, 2011). The South At-

lantic subtropical Anticyclone (SASA) and its latitudinal position in the South Atlantic Basin

(SAB) is responsible for changes in sea level pressures, wind speeds and air temperatures in

northern Brazil (Gilliland and Keim, 2018). The position of the SASA and the South Atlantic

Ridge is important for the low-level water vapour transport towards NEB (Brahmananda Rao

et al., 1993; De Lima Moscati and Gan, 2007; Gomes et al., 2015). Their position influences

the occurrence and propagation speed of EWDs (Kayano, 2003). EWDs reach the coast east

of the center of the Caatinga. They can either move inwards and cross the Caatinga or get

deflected along the north coast and contribute to local rainfall along their path (Gomes et al.,

8



2019). While the isolated effect of EWDs is weak for the whole Caatinga (Kayano, 2003), it

is the main source of rainfall variability along the east coast and in the interior NEB region

(De Lima Moscati and Gan, 2007). Only 14 % of the reported EWDs move across the region

towards the Amazon (Gomes et al., 2019).

The wet season in the Southwest is induced by northward incursions of cold fronts (CF) from the

South Atlantic Ocean that move northwestward from the southern Brazilian coast (Rao et al.,

1996; Marengo et al., 2018). Frontal systems interact with convective activity from the Amazon

Basin or from the northern coast of Brazil (Kousky, 1979; Torres and Ferreira, 2011) and cause

a precipitation maximum during November & December. CFs are linked to the northward dis-

placement of the South Atlantic Convergence Zone (SACZ). They are additionally modulated

by the upper-level cyclonic vortex situated over the Atlantic Ocean, intense convection over the

eastern Amazon, and an eastward shift in the position of the Bolivian high. At low levels the

flow is directed from the Amazon towards the South of NEB and there is an eastward shift of

the SASA with a weakening of the southeast trade winds over the Northeastern coast (Chaves

and Cavalcanti, 2001; De Lima Moscati and Gan, 2007; Gilliland and Keim, 2018).

The influence of several oscillating atmospheric systems is well established for the Caatinga, espe-

cially on the northern and southern areas. Previous research demonstrated that rainfall anoma-

lies in NEB are linked to several modes of natural variability, including El Niño/Southern Oscil-

lation (ENSO), the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO),

and the Atlantic Multidecadal Oscillation (AMO). While being a major driver of precipitation

variability, ENSO is only responsible for a fraction of droughts, which can occur during both

phases and are additionally governed by other remote processes (Wang and Fiedler, 2006; Ro-

drigues et al., 2011; Hastenrath, 2012; Rodrigues and McPhaden, 2014; Amorim et al., 2014;

Barbosa and Kumar, 2016).

2.2 Data and Processing

The precipitation data used is the ”GPCC Full Data Monthly Product Version 2018 Monthly

Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data” dataset

at 0.25° degree resolution (Meyer-Christoffer et al., 2018) of the Global Precipitation Climatol-

ogy Center (GPCC). It was obtained as a netcdf file from http://gpcc.dwd.de. The GPCC data

is an influencial dataset, used for other climatologies like CHELSA (Karger et al., 2017) or for

benchmarking other precipitation products (Prakash et al., 2015). It is a gridded global dataset

provided in world geodetic system (WGS) 84 with a time coverage from 01.01.1981 to 01.12.2016

and includes 6 variables (excluding dimension variables): precipitation in mm/month per grid,

number of gauges per grid, number of infilled gauges per grid, interpolation error without infilled

stations per grid, interpolation error with infilled stations per grid and difference of new minus
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2.2 Data and Processing

old interpolation method per grid. All analyses are based on precipitation.

As a proxy for vegetation productivity, the fraction of absorbed photosynthetically active ra-

diation (FPAR) was used. The energy required by terrestrial vegetation to produce organic

materials from mineral components is provided by solar radiation in the spectral range 400-

700 nm, known as photosynthetically active radiation (PAR). The proportion of PAR that is

effectively absorbed by plants is called FPAR. It can be used to assess the primary productivity

of canopies, the associated fixation of atmospheric CO2 and the energy balance of the surface

and was defined as an essential climate variable (ECV) (, GCOS). Monitoring FAPAR can pro-

vide information on the amount and health cycle of vegetation (Sessa and Dolman, 2008; GCOS,

2011; Hollmann et al., 2013). Compared to the famous normalized difference vegetation index

(NDVI), FPAR has the advantage that it is a real-world biophysical unit, that can be verified

insitu.

The FPAR data used is the ”NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 4” at 0.05° resolu-

tion (Claverie et al., 2016) of the National Oceanic and Atmospheric Administration (NOAA). It

was obtained as netcdf files from https://www.ncei.noaa.gov using GNU wget 1.20 FTP-server

downloading software (Foundation, 2010). It is a gridded global dataset provided in WGS84,

with a daily coverage from 01.01.1981 ongoing and includes 3 variables (excluding dimension

variables): leaf area index, fraction of absorbed photosynthetic active radiation and quality

control bit flags. All analyses are based on FPAR. While the authors reported saturation ef-

fects for broadleaf biomes with high leaf area index (LAI) (>4.5) and FPAR (>0.8) values,

this can be neglected for most of the area. The whole Caatinga was categorized as one land

cover class during calculation (Claverie et al., 2016). Time series with <10% missing data were

included (Vasseur and Yodzis, 2004). To match the monthly temporal resolution of the pre-

cipitation dataset and to handle missing values, maximum value composites were generated.

The maximum value of each pixel of each month was chosen to represent that time step (Bar-

bosa et al., 2019). Spatially, the FPAR data was aggregated to 0.25° resolution using an average.

The extent and Caatinga borders are taken from the shapefile of the ”Biomes 2004” map

(IBGE, 2004) and was obtained from https://www.ibge.gov.br. It is a vector dataset provided

in 1:5000000 scale and originally distributed using the ”Sistema de Referencia Geocéntrico para

las Américas geocentric reference system” (SIRGAS) and was reprojected to WGS84 prior ap-

plication.

To ensure compatibility and to facilitate analysis, all data was preprocessed using the raster

package and R Studio (R Core Team, 2019; Hijmans, 2019). The datasets were temporally har-
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monized to match the 35 year period from 1982 to 2016, the maximum possible overlap. The

data was spatially restricted to the official Caatinga borders and big water surfaces were masked

out, resulting in 1049 remaining pixels per dataset that each yield a time series of 420 monthly

time steps. If possible, the color scales of the plots were generated using the ”viridis” package

(Garnier, 2018), to ensure readability when printing in greyscale and for the colourblind. Due

to the mainly diagnostic nature of this study, all data presented here is unfiltered and not de-

trended (as in Giannini et al. (2004)). This allows a better quantification of the direct impacts

of precipitation variability over the Caatinga vegetation response by retaining the real amount

of rainfall which is directly related to the vegetation or damages to local economy (Lucena et al.,

2011).

2.3 Clustering

Clustering is a common unsupervised machine learning task, in which the data set has to be

automatically partitioned into ”clusters”. The k-medoids clustering algorithm ”Partitioning

Around Medoids” (PAM) (Kaufman and Rousseeuw, 1990) was chosen, because it outperforms

traditional k-means in terms of execution time, overlapping clusters and reduced noise (Arora

et al., 2016). It allows clustering using a wide range of distance metrics and has been used in a

huge variety of fields, ranging from environmental or climatological studies to facial recognition

(Bracken et al., 2015; O’Donnell et al., 2017; Molaei et al., 2019), as well as explicitly for re-

gionalisation and precipitation regimes (Belagoune et al., 2017; Ma et al., 2020; Saunders et al.,

2020).

PAM takes a dissimilarity matrix D as input and produces a set of cluster centers or ”medoids”,

which are themselves elements in the set being clustered. This makes them more robust represen-

tations of the cluster centers compared to k-means approaches. This is particularly important

since rainfall probability distributions are seldom gaussian (Öztürk, 1981; Thompson, 1984;

Fatichi et al., 2012) and in the presence of skewed distributions or extreme values, or if many

elements do not clearly belong to any cluster (Van der Laan et al., 2003; Arora et al., 2016;

Schubert and Rousseeuw, 2018).

The medoids identify the clusters and are selected as follows: K denotes the number of clus-

ters and M = (M1, . . . ,MK) is any size K collection of the p elements xj . With M, the

dissimilarity d (xj ,Mk) of each element and each member of M is calculated. For each ele-

ment xj , the minimum and minimizer is denoted by mink=1,...,K d (xj ,Mk) = d1 (xj ,M) and

min−1k=1,...,K d (xj ,Mk) = l1 (xj ,M). PAM selects the medoids M∗ by minimizing the sum of such

distances
∑

j d1 (xj ,M). Each medoid M∗k identifies a cluster, defined as the elements which are

closer to this medoid than to any other. Each element gets their respective cluster membership

assigned.
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2.4 Spatiotemporal Analyses

Using the R package ”cluster” (Maechler et al., 2019) PAM was applied to raw, scaled and cen-

tred precipitation data, with k = 3 according to the 3 suggested rainfall sources of the Caatinga

(de Andrade et al., 2017) (see sec. 2.1 & fig. 2.1). The results were congruent, so only the

raw-based version was used for further analyses. To assess clustering quality and estimate the

optimal number of clusters as detectable in the data, the ”NbClust” and ”factoextra” pack-

ages (Charrad et al., 2014; Kassambara and Mundt, 2020) were used. Within cluster sum of

squares (Scree- or Elbowplot), average silhouette method (Kaufman and Rousseeuw, 1990) and

gap statistic (Tibshirani et al., 2001) were applied. Clustering quality results can be found in

the appendix 5.2.

2.4 Spatiotemporal Analyses

To characterize the precipitation and vegetation dynamics, a suite of spatial and temporal pa-

rameters was calculated. The metrics measure long-term averaged conditions, strength, seasonal

dynamics and reliability, as well as time series behaviour and intrinsic predictability from an

information theory point of view.

2.4.1 Baseline Conditions

First, as a measure of overall water availability, mean annual precipitation (MAP) was calculated

for all precipitation time series as the cumulative sum of averaged monthly values (x̄):

MAP = Σ [x̄January, x̄February, · · · , x̄December] (2.1)

As a first inventory and to capture the typical vegetation conditions, the mean annual maximum

FPAR (MAMF) was used, as it captures the peak of the season and represents the underlying

vegetation or land cover type more accurately than a cumulative sum (Ceccherini et al., 2013).

It is calculated using the arithmetic mean of all annual maximum FPAR values:

MAMF =
1

n

35∑
i=1

maxi =
max1982 +max1983 + · · ·+max2016

n
. (2.2)

Additionally, the total mean FPAR (MF), the mean annual FPAR range (MAR) were calcu-

lated. Plots can be found in the supplements: fig. 5.6.
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2.4.2 Variability

In order to capture long-term variability of the time series, the coefficient of variation (CV)

was calculated. The CV has been used to quantify the reliability of rainfall regimes (Fatichi

et al., 2012) or vegetation variability (Schucknecht et al., 2013). The CV, which in the context

of precipitation can be understood as the reliability of the rainfall amount or ”relative season-

ality” (Schwartz et al., 2020), was chosen to facilitate cross-regional comparisons, because it is

unbiased by the absolute local mean values unlike e.g. standard deviation (Oliver, 1980) and

was calculated for both datasets. CV is the ratio of the standard deviation (σ) to the mean (x̄),

expressed as percentage:

CV = 100× (σ/x̄) (2.3)

Relative seasonality has been used to explain species distributions and spatial patterns in life

history strategies (Schwartz et al., 2020). The CV of monthly precipitation as measure of relative

seasonality (Abel et al., 2020) is widely used in biogeography research (e.g. (Beaumont et al.,

2005; Parmentier et al., 2007; Rubio de Casas et al., 2017)) and is included in the famous

BIOLCIM dataset (Booth et al., 2014). Due to high correlations with other parameters, the CV

of monthly values has been moved to the appendix (fig. 5.8) and will not be further discussed.

2.4.3 Rainfall Concentration, Seasonality and Timing

Rainfall concentration and dry season length can be strong factors governing vegetation structure

and dynamics in the dry tropics (Engelbrecht et al., 2007; Bowman and Prior, 2005). However,

the explanatory power of dry season length can be limited. The length of time during which

precipitation falls below a threshold may not necessarily translate to water availability or the

severity of water stress during that period (Schwartz et al., 2020). On a monthly time scale,

it did not prove to be a sensible choice (see supplements; fig.5.9). Alternatively, to assess

seasonal concentration of precipitation and to measure dry season intensity, the precipitation

concentration index (PCI) was calculated for each precipitation time series. The PCI is a

dimensionless measure of average annual rainfall concentration and was originally introduced by

Oliver (1980). It is calculated based on monthly values and their CV as shown in the following

equation:

PCI =
100

12
×
[
1 +

( cv
100

)2]
(2.4)

The theoretical limits of the PCI are 8.3 when the rainfall in each month of the year is the same

(CV=0) and 100 when the entire yearly rainfall occurs in one month (CV=100
√

11). PCI values

double when the same monthly increment occurs in half of the designated period. A figure

of the theoretical PCI scaling can be found in the appendix (fig. 5.10). Later Michiels et al.

(1992) expanded the PCI to differentiate between seasonal concentration (PCI1) and temporal
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2.4 Spatiotemporal Analyses

concentration (PCI2). The authors showed that averaging across all respective months of a time

series and calculating the PCI captures the average seasonal concentration at this station (PCI1).

Calculating the PCI for each individual year and averaging across the interim results captures

the temporal concentration of the typical season (PCI2). Irregular or changing timing of the

rainy season during the observation period leads to a broad average rainfall distribution and

low PCI1. The PCI2 captures the rainfall concentration of the typical individual season more

closely, independent of its timing. Thus, the interplay and differences between PCI1 and PCI2

not allow only for a characterization of the average annual seasonality from uniform to strongly

seasonal concentration, but give additional insights into the regularity of seasonal timing and

concentration. This was defined as a third parameter PCI∆, by substracting PCI1 from the

PCI2 values.

Due to its calculation, the PCI heavily decreases for distributions without months without values.

This nonlinear behavior makes it less intuitive to interpret seasonal concentration of vegetation

that forms a steady cover, so this metric was omitted for FPAR.

Seasonality, Phenology

The timing of the season is an important parameter for the assessment of regional precipitation

or phenological patterns in ecohydrological studies (Marengo et al., 2001; Liebmann et al., 2007;

Feng et al., 2013). The onset and cessation of the wet or dry season are common measures of

timing, but measures related to the date of peak rainfall or productivity occurrence are also

applied (Feng et al., 2013; Schwartz et al., 2020; de Jesus et al., 2020). To capture temporal

differences in timing of the seasons, the typical peak and onset month was determined for each

pixel and both datasets. For the onset month, the mean annual distribution was calculated and

its total mean was set as threshold to decide between wet and dry season. To anticipate seasonal

patterns that span from one year to the other, each year was replicated so that at least one full

season was created. Then, the start month of the longest contiguous sequence of values above the

mean was determined. For the peak of the season, the month of the maximum value of each year

was determined and discrete monthly increments (Jan = ”1”, Feb = ”2”, · · · , Dec = ”12”) were

assigned. In order to account for the circular nature of discrete monthly numbers (|1Jan−2Feb| =
1, |1Jan − 12Dec| = 1), a circular approach had to be used. The monthly increments were

transformed to radians before calculating the median value of all yearly maximum months m̃seas

using the circular package (Agostinelli and Lund, 2017). The circular median was chosen to avoid

fractioning the monthly increments.

2.4.4 Time Series Predictability and Structural Complexity

Information theory quantifiers (ITQ) were applied to capture differences in time series behavior,

deal with nonlinearity and as a measure of intrinsic predictability of the systems at hand (Sippel
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et al., 2016; Pennekamp et al., 2019). ITQs capture the structure and dynamics of series and

have been successfully applied in many fields, ranging from medical research, characterisation

of precipitation regimes, model benchmarking and to assessment of intrinsic predictability of

different systems (Ouyang et al., 2013; Zhang et al., 2019; Liu et al., 2019; Sippel et al., 2016;

Pennekamp et al., 2019). Using permutation entropy (PE) and Mart́ın-Platino-Rosso statistical

complexity (MPR) allows to classify time series behaviour in terms of structure and predictability

(Sippel et al., 2016; Ribeiro et al., 2017; Pennekamp et al., 2019).They are metrics based on the

space of probability density functions (PDFs) for datasets. This makes it possible to compare

different sets and to classify them according to the properties of their underlying processes,

i.e. stochastic vs. deterministic. ITQs can separate time series that are difficult to distinguish

by conventional analysis. They can discern stochastic processes like correlated noise (Vasseur

and Yodzis, 2004), noisy series with underlying mechanistic forcings like seasonal cycles, and

deterministic chaotic maps, which do not contain any noise (Rosso et al., 2007). The position

within causal information planes (entropy-complexity plane) is an especially fast tool to discern

time series structural behavior (Rosso et al., 2012).

Ordinal pattern statistics and the seminal works of Bandt and Pompe (2002) with incorporated

weight information (Fadlallah et al., 2013) are the basis for the ITQs. The embedding dimension

D = 4 time steps and a time lag τ = 1 was used, to match the time series length requirements,

following the Lehmer-permutation scheme (Olivares et al., 2012). ITQs capture global properties

of the data and relate to the information content and the complexity of the data.

The permutation Shannon entropy (PE) is a measure of the information content of a time series

and can be used to quantify uncertainity, disorder, state-space volume and lack of information

(Shannon, 1948; Brissaud, 2005). The obtained parameters PE (H[P ]) & MPR (C[P ]) are robust

against noise and nonstationarity, when the transformations do not happen within the width

of the embedding dimension (Lopez-Ruiz et al., 1995; Rosso et al., 2007, 2012; Sippel et al.,

2016). Based on a probability distribution with N possible states P = {pi; i = 1, . . . , N} with∑N
i=1 pi = 1, the Shannon information measure (Entropy) reads:

S[P ] = −
N∑
i=1

pi ln [pi] (2.5)

The Shannon entropy is minimal when all but one of the pi ’s vanish, and maximal when all

p′is are equal, i.e. for the uniform distribution Pe =
{
pi = 1

N ,∀i = 1, . . . , N
}
. In this case,

S [Pe] = Smax = ln N. However, these two situations are extreme cases and unlikely to occur

in any natural phenomenon considered here. In the following normalized Shannon entropy,

0 ≤ H ≤ 1, was used:

H[P ] = S[P ]/Smax. (2.6)
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2.4 Spatiotemporal Analyses

Contrary to information content, there is no universally accepted definition of complexity. The

focus of this thesis is on describing the complexity of time series and not the complexity of the

underlying systems. Statistical complexity (MPR,C[P ]) is low for ordered settings like simple

oscillations or trends (minimal PE) and for unordered, uncorrelated white noise (maximal PE).

Between the two extremes, data is more difficult to characterize and has higher complexity. C[P ]

captures structures in the data that relate to organization, correlational structures, memory

and other properties (Feldman et al., 2008). This is is achieved by measuring a disequilibrium,

which is the distance from the equilibrium (uniform) distribution of the accessible states of a

system (Lamberti et al., 2004). The Jensen-Shannon divergence quantifies differences between

probability distributions or symbolic sequences (Grosse et al., 2002) and has been used in a

wide range of biodiversity research, including genetics (Kartal et al., 2020), gut microbiomes

(Goedert et al., 2014), and mangrove forests (Jia et al., 2019). Based on the seminal notion

advanced by Lopez-Ruiz et al. (1995), this statistical complexity measure (Martin et al., 2003)

is based on the normalized Shannon entropy (PE) and the disequilibrium QJ [P, Pd] defined in

terms of the Jensen-Shannon divergence J [P, Pe]:

QJ [P, Pe] = Q0J [P, Pe] = Q0 { S [(P + Pe) /2]− S[P ]/2− S [Pe] /2} (2.7)

where Q0 is a normalization constant chosen such that 0 ≤ QJ ≤ 1:

Q0 = −2

{
N + 1

N
ln(N + 1)− ln(2N) + lnN

}−1
. (2.8)

It is defined via the functional product form:

C[P ] = QJ [P, Pe] · H[P ]. (2.9)

C[P ] or ”MPR” was used for plotting and classifying the time series in the entropy-complexity

plane (Rosso et al., 2012) (see fig. 5.14), but lead to spatial patterns very similar to PE and

was moved to the appendix (see 5.13).

2.4.5 Trends

In order to understand long-term dynamics of precipitation and vegetation in the Caatinga,

especially with changing long-term conditions, trend analyses were applied. Trend analyses are

often performed using a pixelwise linear model. They provide the slope coefficient of an ordinary

least squares regression (OLS) between the values over time and a linear time-series(Fensholt

et al., 2015). However, the outcome of a regression analysis is influenced by several factors

related to the data (data choice, data period and quality), the choice of vegetation metric and

the nonlinearity of processes in relation to the predicting variable used as the trend indicator.
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Since environmental time series often do not meet parametric assumptions of normality and

homoscedasticity (Hirsch and Slack, 1984), median trend (Theil-Sen)(Sen, 1968) procedure has

also been applied to detect trends in vegetation (Fensholt et al., 2012, 2013). The Theil-Sen

(TS) estimator is a rank-based test based on nonparametric statistics that calculates the slope

and intercept of all pairs of observations of the time series, which makes it effective for noisy

series. Due to its use of the median, up to approximately 29% of the samples can be unrelated

noise without impacting the statistic (Hoaglin et al., 2000). TS is proven to be robust against

seasonality, non-normality, heteroscedasticity, temporal autocorrelation (intra- and inter annual

scale), as well as censored data (Hirsch and Slack, 1984; Van Belle and Hughes, 1984; Akritas

et al., 1995; Alcaraz-Segura et al., 2010). It has been recommended for analysing time series of

vegetation (De Beurs and Henebry, 2005). It is based on the simple linear regression model

Y = αreg + βX + ε (2.10)

with the slope β, the y-intercept αreg and the error term ε. The Theil-Sen estimator determines

the slope of the regression line via the median of the slopes of all lines that can be drawn through

the data points:

TS(x, y) = mediank,l∈{1,...,n}

(
yl − yk
xl − xk

)
. (2.11)

It was calculated for each pixel time series of both data sets with a significance level α set to

0.05.

2.5 Precipitation-Vegetation Coupling

The strength of the correlation between precipitation and vegetation time series was assessed

using pixelwise correlation and lagged regression analyses.

As a measure of temporal correlation of the two sets of time series, the Spearman correlation

coefficient ρt is defined as the Pearson correlation coefficient between the rank variables. Spear-

man rank correlation is a non-parametric test, making it robust against outliers, noise and

non-normality of the data (Hollander et al., 2013). It is widely used in environmental research

and for precipitation time series (Ceccherini et al., 2013; Zhang et al., 2018). The implementa-

tion of Team (2019) was used for calculation. For a sample of size n, the n raw scores Xi, Yi are

converted to ranks rgXi
, rgYi , internally and rs is computed as

rs = ρrgX ,rgY =
cov (rgX , rgY )

σrgXσrgY
(2.12)
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2.6 Statistical Analyses

where ρ denotes the usual Pearson correlation coefficient, but applied to the rank variables,

cov (rgX , rgY ) is the covariance of the rank variables, σrgX and σrgY are the standard deviations

of the rank variables.

Lagged linear regression was applied as a second metric and to incorporate the signal of the

preceding season. For each time series pair, FPAR values of a given month are regressed on

precipitation values of the concurrent and past months. The coefficient of determination R2
t

denotes the percentage of explained variability of the FPAR data around its mean. It is defined

as the models R2, adjusted for the number of predictors. Based on literature review (Gessner

et al., 2013; Barbosa and Kumar, 2016) and preliminary tests, the precipitation of the concurrent

and 3 preceding months were chosen as predictors. With the y-intercept αreg, and the slopes

β (Xt, Xt−1, · · · , Xt−3), as well as the error term ε, the equation reads:

Yt = αreg + βXt + βXt−1 + βXt−2 + βXt−3 + ε. (2.13)

The lagged regression analyses are of exploratory nature and individual choice of lag lengths or

assessing potential bias and other model diagnostics was beyond the scope of this work.

2.6 Statistical Analyses

In order to support and verify the results of the clustering and to test for differences in spatial

distribution, the results of the temporal analyses were compared statistically. All parameters

were grouped according to their precipitation cluster membership and the subgroups were com-

pared. After tests for independence of the data (Strasser and Weber, 1999), the nonparametric

Wilcoxon-Mann-Whitney Test(Bauer, 1972; Hollander et al., 1999) was applied. The imple-

mentation in the ”coin” package (Hothorn et al., 2008) was used, which can handle ties. The

Wilcoxon-Mann-Whitney Test tests for the equality of the distributions of a numeric response

variable in two or more independent groups against shift alternatives. Testing for dependent

data via the nonparametric Wilcoxon rank-sum Test (Bauer, 1972; Hollander et al., 1999) in-

cluded in the ”ggsignif” package (Ahlmann-Eltze, 2019) yielded similar results and was moved

to the annex (fig. 5.19). Comparing subgroup medians via Kruskall-Multi-Comparison tests

(Kruskal and Wallis, 1952; Siegel, 1988) using the ”pgirmess” package (Giraudoux, 2018) also

yielded similar results and was not further pursued.

For circular data, such as the seasonal timing and phenological parameters, the Watson-Wheeler

test of homogeneity of means (Batschelet, 1981) was applied. The implementation of the ”cir-

cular” package (Agostinelli and Lund, 2017) was used. The Watson-Wheeler (also known as

Mardia-Watson-Wheeler, or uniform score, or Watson-Williams) test is a non-parametric test to

compare the mean or variance of two or several samples and can be applied for circular data.
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3 Results

Clustering precipitation data with k=3 clusters resulted in a northern cluster k3N (cluster

1), covering 35.56 % of the area, an eastern cluster k3E (cluster 2), covering 21.45 % which pro-

trudes towards the center of the region at around S 7° and the biggest cluster in the South k3S

(cluster 3) with 43 %. A map of the clusters and the precipitation distributions of each cluster

are shown in figure 3.1. Clustering quality indices can be found in the appendix (fig. 5.2).

The spatial distribution of MAP (see fig 3.2 (a)) shows an area of increased rainfall with values

of up to 1612 mm/yr−1 in the Northwest (S 4°; W 43°). Other areas of increased precipitation

are located along the north-eastern border, or uplands such as the Chapada do Araripe in the

northern center (S 7°; E 39°) and the Chapada Diamantina (S 14°; W 42°, see also the elevation

map in the appendix, fig. 5.1). East and west of the Chadapa do Araripe, ”valleys”, i.e. areas

of decreased MAP are visible, indicting two drier belts protruding to the northern coast. The

center of the Caatinga (ranging between S 9°-S 11° and W 39°-W 42°) exhibits the lowest MAP,

with the minimum at 355 mm/yr−1.

The overall variability of precipitation exhibits the highest values of up to 174 % in the center of

the area. The Northeast, the northern uplands and the eastern border exhibit the lowest values,

with the eastern area leading with CVp of values that reach 79 %. The ”valley” feature is visible

again, exhibiting increased CVp in two belts from the center of the region to the northern coast.

k3N shows the narrowest distribution and an average CVp of 130 %. k3S has the highest average

CVp at 134 % and intermediate spread. k3E reaches the lowest values with an average of 119 %

and the widest range.

The average annual rainfall concentration ranges from a strongly seasonal distribution in the

north with PCI1 values up to 21, to uniform rainfall distribution in the south east (<9), close to

the absolute possible minimum. The area of very low PCI1 values reaches westwards up to the

Chapada Diamantina (S̃ 13°; W 42°) and stretches along the eastern border into the north. The

southern peak and Southwest exhibit intermediate PCI1 values that match the central north-

ern values. The center of the Caatinga is the area of the highest mismatch of seasonal timing,

captured by the difference between PCI1 and PCI2, ∆PCI. The PCI1 values of this area are

intermediate, but the PCI2 values are very high due to very strong seasonal concentration in

individual years. The ∆PCI also exhibits high values east and west of the Chapada do Araripe,

indicating unstable seasonal timing and concentration. The north-western edge of the Caatinga

shows almost no difference between averaged seasonal pattern and individual seasonal concentra-

tion, indicating seasonal distribution and temporal stability. k3N exhibits the highest average

PCI1 (17.12) and narrowest distribution, followed by k3S (x̄PCI1: 14.13) and k3E (x̄PCI1:
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Figure 3.1: (a) Spatial representation of the precipitation clustering, Cluster 1 = k3N (pur-
ple), Cluster 2 = k3E (turquoise), Cluster 3 = k3S (yellow); (b) - (d) Precipitation
distributions of the clusters 1982-2016. Precipitation values of each month of the
respective cluster are represented as boxplots. Boxes range from 25th to 75th per-
centiles, thick black lines are the median, whiskers stretch 1.5 ∗ IQR (interquartile
range). Outliers have been truncated at 500 mm for plotting.
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Figure 3.2: Spatial distribution of (a) MAP (mm−yr) and (b) CVp (%) based on the years 1982-
2016.

12.35). For ∆PCI, k3N exhibits the narrowest range with an average difference of 4.52, k3E the

widest range with an intermediate difference of 7 PCI∆ and k3S the highest average difference

of 8.38 PCI∆.

Precipitation onset and peak maps (fig. 3.4) show the median onset and maximum precipi-

tations months. They form 3 patches, a clear north-south divide that has a small southward

notch north of the Chapada Diamantina (S̃ 13°; W 42°) and a detached area along the eastern

border of the Caatinga. The wet season of the northern region mostly starts in January and

peaks during March, the wet season onset of the eastern patch is around March, with a peak

during austral winter. The southern area starts mainly in November and peaks subsequently in

January.

The precipitation time series behaviour and predictability exhibits a clear north-south divide

(S 7°; W 44° - S 5°; W 38°). The minimum 0.71 PEp is in the very north, indicating higher pre-

dictability and the presence of structure, such as long-term correlations and cycles (seasons) in

the time series. High values are prevalent throughout most of the rest of region, up to 0.97 PEp,

indicating low predictability and stochastic time series, close to (white) noise behaviour. The

very southern tip shows again slightly decreased PEp values, indicating the area of structural

(cyclical) influences by the SACZ. MPRp closely mirrors the spatial distribution of PEp and can

be found in the appendix 5.13.

All observed precipitation trends are negative. The strongest precipitation trends are in the

21



3 Results

south east (S 12°, W 38°) with values up to −10 mm per decade. Merely 16.49 % of the region

exhibits significant changes in precipitation (p < 0.05). k3N exhibits the smallest rates of change

and k2E the strongest and most variable trends.

For vegetation, the spatial distribution of MAMF values loosely resembles MAP with low

values in the dry core area and in the Northeast. Generally, there is a north-west to south-east

gradient of declining values. The north-western area has the highest FPAR peak (excluding the

total maximum in the Chapada Diamantina, MAMF 0.87 %). The lowest MAMF values seem

to follow the distribution of the highest PCI∆ values (fig. 3.3 (c)).

Vegetation variability CVf is lower than precipitation CVp and seemingly linked to topogra-

phy. It is the lowest in the north-western patch, along the northern border and well defined

uplands. The core area of the Caatinga and the areas north-east and north-west of the Chapada

do Araripe uplands show the highest CVf with values above 40 %. k3N has an average CVf of

27.5 % and the biggest range, while k3E has the highest average CVf of 29.9 % and the lowest

range. k3S has the lowest average FPAR variability of 25.8 %.

Vegetation seasonality (fig. 3.7) exhibits similar, but slightly fuzzier patterns compared to

precipitation with a 1-3 month delay (see fig. 3.4). The predominant onset month in the North

is February, followed by peak values around May and June. The eastern patch along the border

is again visible, but bigger compared to the precipitation maps with season onset during austral

fall and peak during austral winter. The southern tip and western central parts exhibit season

onset between November and January and a peak mainly during austral fall and even earlier

for the most southern tip. ”Valley” like patterns, that were already visible in the spatial dis-

tributions of MAP, CVp (fig. 3.2 (a) & (b)), PCI2, PCI∆ (3.3 (b) & (c)) are again visible east

and west of the northern uplands and connected the southern and central part of Caatinga that

peaks during austral fall.

48.23 % of the Caatinga exhibits significant trends in FPAR between 1982 and 2016 (fig.

3.8 (b)). In contrast to trends in precipitation (fig. 3.5 (b)), 46.61% of the total area trend

positively with a maximum up to 4.7 %/dec−1 and only 1.62 % show a negative trend. Only

7.72 % of the total area is trending in both precipitation and FPAR. The region around the

northern uplands forms the largest coherent patch. Coherent patches are also located in the

north western corner and the southern tip of the region. The fragmented negative trends are

mainly concentrated in the central part. k3N and k3E exhibit trends of 2̃ % per decade, k3S

1̃.5 % per decade. For the time period 1982-2010 Caatinga FPAR exhibited an average increase

of 10.31 % compared to the baseline mean 1982-2010. For the reference period 1982-2016 the

changes amount to an increase of 12.37 %.
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The vast majority of time series pairs is correlated positively (99%, p < 0.05, fig. 3.9 (a)).

The areas of the highest ρt are along the south western border, the western central area an the

northern hinterland. The area north west of San Salvador and parts of the Chapada Diamantina

are not significantly correlated, as well as the north-western edge of the region, a small patch

area at the Rio São Francisco dam and a patch near Juazeiro do Norte (S 7.5°; W 39.3°). The few

negatively correlated pixels are restricted to areas of strong human influence, the north-western

edge or next to the non-significant patches.

The coefficients of determination of the lagged regressions results in a north-west to south-

east gradient (fig. 3.9 (b)). The closest link is in the Northwest, where precipitation of the

same and the three preceding months explain over 40% of the FPAR variability (p < 0.05).

Only very low adj. R2
t are achieved along the eastern border and in the south-east . The area

around San Salvador and the North of the state Bahia does not show any significant relationship.

Most cluster-based subgroups exhibited highly significant differences between precipitation- and

vegetation-based parameters (see 3.1 & 3.2). For K3E and k3S, MAP exhibited only weakly sig-

nificant differences. Between them, PEp and R2
t did not exhibit significant differences (p < 0.05).

Vegetation trends of k3N and k3E exhibited similar distributions and were not statistically dis-

cernible (p < 0.05).
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3 Results

Table 3.1: Group comparisons of the temporal parameters, split according to precipitation clus-
ter memberships. Wilcoxon-Mann-Whitney Test; significance levels: ∗ ∗ ∗ <0.001,
∗∗ <0.01, ∗ <0.05, − >0.05; exact p.values can be found in the supplements (see 5.1)

k3N -k3E k3N -k3S k3E-k3S

MAP ∗ ∗ ∗ ∗ ∗ ∗ ∗
CVp ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PCI1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PCI1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PCI∆ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
TSp ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PEp ∗ ∗ ∗ ∗ ∗ ∗ −
MAMF ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
CVf ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
TSf − ∗ ∗ ∗ ∗ ∗ ∗
PEf ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ρt ∗ ∗ ∗ ∗ ∗ ∗ ∗
R2
t ∗ ∗ ∗ ∗ ∗ ∗ −

Table 3.2: Group comparisons of the temporal parameters, split according to precipitation clus-
ter memberships. Watson-Wheeler test of homogeneity of means for circular data;
significance levels: ∗ ∗ ∗ <0.001, ∗∗ <0.01, ∗ <0.05, − >0.05; exact p.values can be
found in the supplements (see 5.1)

k3N -k3E k3N -k3S k3E-k3S

ONSp ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PEAKp ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ONSf ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PEAKf ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Figure 3.3: Spatial distribution of (a) PCI1, (b) PCI2, and (c) PCI∆ values based on the years
1982-2016. Note: color scales are individual for each panel.
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Figure 3.4: Spatial distribution of precipitation season parameters. Median a) wet season onset
and b) precipitation maximum month based on the years 1982-2016. Monthly values
are coded from 1=”January” to 12=”December” as circular colors.
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Figure 3.5: Spatial distribution of a) PEp (H, disorder) and b) significant changes (TSp in
mm−dec (p < 0.05)) based on the years 1982-2016.
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Figure 3.6: Spatial distribution of a) MAMF (%) and b) CVf (%) based on the years 1982-2016.
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Figure 3.7: Spatial distribution of FPAR phenologies. Median a) season onset and b) maximum
months based on the years 1982-2016. Monthly values coded from 1=”January” to
12=”December” as circular colors.
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Figure 3.8: Spatial distribution of a) PEf and b) significant changes per decade (TSf in %−dec

(p < 0.05)) based on the years 1982-2016.
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Figure 3.9: Spatial distribution of the strength of precipitation-vegetation coupling. (a) ρt (p <
0.05) and b) R2

t (p < 0.05) based on the years 1982-2016.
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4 Discussion

In the following sections, the methods and results of this study will be critically reflected and

interpreted in regard to the research questions posed in section 1. The first part (4.1) will eval-

uate the results of the analyses of the precipitation data. In section 4.1.1, the clustering results

and the spatial extent of the influence zones will be discussed. Section 4.1.2 aims to define the in-

dividual precipitation regimes of the clusters and to evaluate the applied metrics. Subsequently,

long-term precipitation trends will be discussed in regard to their causes and future perspectives

(sec. 4.1.3). The second part (4.2), includes the results of the vegetation analyses. First, the

patterns of precipitation-vegetation correlation will interpreted and a possible explanation for

the spatial patterns will be presented in section 4.2.1. Section 4.2.2 will address the formation of

macroecological vegetation units based on the precipitation regimes. Lastly, long-term changes

in FPAR will be discussed in reference to possible drivers in section 4.2.3.

4.1 Precipitation

4.1.1 Spatial Extent of the Precipitation Regimes

The first aim of this study was to regionalize the Caatinga by comparing spatial patterns obtained

by clustering GPCC precipitation data to theoretical influence zones of large scale atmospheric

systems derived from literature review. While there is a vast body of literature on the large

scale atmospheric systems sourcing Caatinga precipitation, this was the first study to spatially

explicitly delineate their influence areas by clustering precipitation data. Although clustering

quality indices suggested optimal numbers of clusters (k) ranging from 2 to 4 (see 5.2), the

choice of k = 3 proved to be reasonable. The clustering yielded spatial patterns that resemble

the theoretical influence zones depicted by de Andrade et al. (2017) and in section 2.1. They re-

sembled northern cluster k3N (ITCZ influence), a central-eastern cluster k3E (EWD influence)

and a south-western cluster k3S (CF influence). Splitting the temporal parameters according

to their pixels’ cluster membership resulted in three distinct precipitation regimes and statis-

tically different subgroups for all time series characteristics besides MAP and PEp (see tables

3.1 & 3.2). While the results allowed for attributing the areas to their main influence system,

wide ranges of some parameters implied high intracluster heterogeneity, either from overlapping

influence areas or clustering mismatches. The spatial extent of k3N was smaller than expected,

while k3E seemed to be the most heterogeneous cluster with the biggest ranges in the individual

parameters, or with the most incorrectly admitted areas. A strong argument for the underesti-

mation of the northern influence zone are the precipitation peaks in March and April, that are
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4.1 Precipitation

prevalent in the seasonal profiles of clusters k3E and k3S (fig. 3.1 (c) & (d)). These two months

followed the pattern of the ITCZ seasonal distribution and brought more precipitation than the

typical levels of the two other clusters.

Large areas exhibited PEAKp that matches the ITCZ time signature, while the spatial dis-

tribution of parameters such as seasonal concentration (PCI1) and predictability (PEp) spatial

distribution indicated a smaller northern zone. The contributions of those two months are higher

than the local baseline precipitation patterns. However, their influence on the local precipitation

regimes and vegetation patterns might be negligible - due to the short water retention potential

of the majority of the soils in the Caatinga (see sec. 2.1), individual months of strong precip-

itation might surpass a threshold and no longer shape or benefit local vegetation productivity

(Heisler-White et al., 2008; Ross et al., 2012; Zhang et al., 2013). With the data at hand, it is not

possible to discern whether precipitation contributions to the seasonal profiles stem from truly

mismatched areas, or areas of overlapped and shared influences. PAM clustering showed mean-

ingful and fast results for the core influence areas, while some ambiguity remained, especially in

bordering zones, where the influences overlapped. A possible solution could be complex network

analyses (Ciemer, 2019) or regionalization based on fuzzy clustering approaches (Satyanarayana

and Srinivas, 2011; Dikbas et al., 2012) that allow for partial and mixed cluster memberships.

Also, finer temporal scales could allow tracking or classification of rainfall events according to

their sourcing system and to derive a ratio of their contributions.

4.1.2 Temporal Characteristics of the Precipitation Regimes

The analyses of seasonal dynamics in terms of timing and seasonal precipitation distributions

revealed three main areas with distinct seasonal dynamics. The influence of the ITCZ system

caused strong seasonal climate with ”well defined” seasonality for k3N and a strong temporal

concentration of the precipitation in a few months. The erratic nature of the EWD and CF

systems shaped the annual seasonal precipitation distribution of k3E and k3S and lead to weak

seasonal precipitation patterns. Onset and peak patterns of the precipitation season (see 3.4)

were in line with findings of Liebmann and Mechoso (2011); Hastenrath (2012); Gomes et al.

(2019). Seasonal concentration patterns (PCI1 & PCI2, see fig.3.3) also supported the matching

to the respective sourcing systems.

The timing dependent parameters ONSp & PEAKp proved to be valuable to discriminate be-

tween the dominating sourcing systems. They clearly captured the strong differences in sea-

sonal timing within the Caatinga, which are even today not often acknowledged in studies (e.g.

de Medeiros et al. (2020)). Failing to acknowledge the different seasonal timings potentially

weakens the results of e.g. precipitation-teleconnection correlations when cumulative wet season

precipitation values are used, that effectively aggregate over the wrong time period for parts

of the Caatinga. Additionally, timing dependent parameter distributions within the cluster
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subgroups revealed ambiguous cluster memberships and mismatches. Some pixels exhibited sea-

sonal timing patterns that clearly belonged to another precipitation sourcing system (see also

supplementary materials, fig. 5.11).

The PCI proved to be a useful parameter in assessing seasonal dynamics, however interpretation

of its results was less straightforward. Due to its nonlinear scaling (Oliver (1980); Michiels et al.

(1992), see 2.4.3 & appendix 5.10), the PCI signal is smaller for distributions with precipitation

in every month, regardless of the total amplitude. Hence, the differences between weakly sea-

sonal distributions are less pronounced and the application of the PCI can only be recommended

for regions that are at least semi-arid.

Precipitation variability was assessed in terms of variation in quantity and timing of the sea-

sons. The interior region of the Caatinga, originally attributed to different clusters, (around

S 10°; W 41°) exhibited the highest CV and PCI∆ values. High PCI2 values indicated a very

concentrated season in individual years, caused by individual events, such as passing of EWDs or

CFs (Gomes et al., 2019; Chaves and Cavalcanti, 2001), which contrasted the broad average dis-

tribution captured by PCI1. The resulting high PCI∆ values indicated a very high interannual

variability of the timing of the precipitation. This area was characterized by very concentrated,

short wet seasons that occured very irregularly throughout the year. Additionally, in this area,

the lowest baseline precipitation met the highest precipitation variability, in both amount and

timing. This pattern could be interpreted as a ”dead spot” of the three sourcing systems. The

area is south of a reliable ITCZ contribution to rainfall (Hastenrath, 2012), and only 14 % of

the reported EWDs move across the region (Gomes et al., 2019). Additionally, the uplands of

South Brazil, as well as local topography such as the Chapada Diamantina shield this area from

advancing CFs (Chaves and Cavalcanti, 2001).

To complement the traditional descriptive statistics and to distinguish the different precipi-

tation regimes from a structural point of view, the time series dynamics were assessed using

information theory quantifiers. The spatial distribution of PEp mapped out a clear northwest-

southeast division that closely resembles the extent of the northern cluster k3N , while clusters

k3E and k3S did not exhibit significant differences. The lower PE values of the northern cluster

k3N indicated cyclic (i.e. seasonal) components and autocorrelation processes that are governed

by underlying deterministic mechanisms. This supported the image of relatively stable timing

and high predictability of the ITCZ controlled precipitation, as reported by Hastenrath (2012);

Marengo et al. (2016, 2018); Giannini et al. (2004); Nobre et al. (2006); Rodrigues and McPhaden

(2014); Hounsou-Gbo et al. (2016)). The other clusters exhibited behaviour that is closer to

stochastic, k-noise series (i.e. pink to white noise) (Vasseur and Yodzis, 2004; Sippel et al., 2016)

without strong long-term autocorrelations or cyclic components. This causes low predictability
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4.1 Precipitation

and rainfalls that are still difficult to forecast (Torres and Ferreira, 2011; Pennekamp et al., 2019).

Since CFs and EWDs are reported to occur several times per month (Nieto-Ferreira et al.,

2011; Gomes et al., 2019), the coarse temporal scale of this study might have prohibited further

differentiation between the two systems in terms of PEp. The use of different embedding dimen-

sions (Cuesta-Frau et al., 2019), lagged permutations (Zunino et al., 2010) or of a third ITQ

could help to better distinguish regional structures and differing dynamical behavior (Rosso

et al., 2007; Sippel et al., 2016). A possible addition is Fisher-Information (Frieden, 2004),

which is asymetric, i.e. sensitive to local changes in the pattern distribution and could therefore

differentiate between systems with equal PEp but different permutation pattern distributions

(Olivares et al., 2012). However, the similar PE values of k3E and k3S could also be related

to the structural similarity of the EWD and CF sourcing systems. While Yamazaki and Rao

(1977) first reported EWDs as the source of the east coast wet season, Kousky (1979, 1980)

stated far reaching CFs or their remnants that occur along the coast as the source of rainfall in

eastern Northeast Brazil. Gomes et al. (2019) recently reported that the main system associated

with EWD formation are CFs (72% of all captured EWDs) and that the most intense CFs tend

to move towards lower latitudes, disturbing the trade winds exactly during the eastern rainy

season (austral autumn and winter). Therefore, EWD and CF systems would share a common

origin, explaining the structural similarity of their precipitation time series, while the temporal

offset of the seasons could be explained by the time the turbulences need to reach low latitudes

and to trigger EWD occurrences.

4.1.3 Long-term changes in precipitation

Long-term precipitation trends exhibited highly localized and negative patterns. While a ten-

dency towards wetter conditions in South America has been reported (Magrin et al., 2007), also

in the the semiarid regions of Brazil (Guerreiro et al., 2013), the results of this study (see section

3) added to reports of drier conditions for Northeast Brazil (Haylock et al., 2006; Marengo et al.,

2010; Barbosa and Kumar, 2016). The findings did not match expected drying trends for NEB,

that are caused by an earlier and stronger northward shift of the ITCZ (Nobre and Shukla, 1996;

Allen et al., 2014), but supported another mechanism.

Cluster k3N exhibited almost no trends, which is in line with findings of Lucena et al. (2011),

who reported a lack of precipitation trends in NNEB despite changing ENSO, PDO and NAO

dynamics. They observed that ENSO-related low-frequency variations in the tropical oceans

occurred together with symmetric long-term changes in PDO/NAO during the second half of

the twentieth century. This symmetrical, in-phase (i.e., inverse impacts), long-term climate be-

haviour could have inhibited their possible indirect mutual impact on NNEB seasonal rainfall.

The resulting precipitation trends would cancel each other out. In contrast, k3E and k3S ex-
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hibited clear drying trends (fig. 3.5 (b)), which is in line with findings by Dunn et al. (2020).

A possible explanation for the spatial distribution of the detected trends lies in the decreasing

moisture transport by the eastern EWD source system. Comparing fig. 3.5 (b) and fig. 4.1

showed that the spatial distribution of the significant trends and typical EWD storm tracks

align well. The patterns revealed that even some areas that were associated with other precipi-

tation systems, obtained a considerable amount of precipitation from passing EWDs. Negatively

trending areas along the northern coast, that had not been attributed to k3E could be explained

as the areas of the ITCZ cluster, that lie along the northern EWD route and were additionally

fed by local EWD-topography interaction, along the uplands of the western border of Ceara.

The trends of k3E could be attributed to the main route of EWDs hitting the eastern coast.

The areas east of the Chapada Diamantina and originally attributed to k3S seem to have ob-

tained an important but decreasing share of rainfall from interaction of westward propagating

EWDs with local convection and topography. This seems to be a relatively new development, as

Brahmananda Rao et al. (1993) reported no trends in precipitation for ENEB during the years

1964-1983. While the isolated effect of EWDs is weak for the whole Caatinga (Kayano, 2003),

it is the main source of rainfall variability along the west coast and in the interior NEB region

(De Lima Moscati and Gan, 2007), and only 14 % of the reported EWDs move across the region

towards the Amazon (Gomes et al., 2019). A westward expansion, or a latitudinal shift of the

SASA, accompanied by a weakening of the easterly tradewinds (pathway of EWDs), could lead

to decreased EWD activity and moisture transport into the exact areas that are trending in

fig. 3.5 (b). Additionally, the location of the SACZ is an important source of precipitation over

SNEB and is linked to the displacement of the SASA and weaker trade winds (Chaves and Caval-

canti, 2001), which also leads to decreasing precipitation contributions in the southern Caatinga.

A poleward shift of the SACZ has been reported for the period 1979-2014 (Zilli et al., 2019).

Based on different emission scenarios, climate change predictions and the resulting atmospheric

warming, it is expected that the position of the SASA will continue to shift poleward and inten-

sify in the twenty-first century (Nunez et al., 2009; Soares and Marengo, 2009; Marengo et al.,

2010; Seth et al., 2010; Gilliland and Keim, 2018). Therefore, the interior of the Caatinga, the

South and especially its eastern border will be the most affected areas, due to fewer EWD mois-

ture transports. This could also offer a mechanistic explanation for Marengo et al. (2018), who

reported that areas most affected by the 2010-2016 drought were areas in the northern part of

the state Bahia, which is particularly important for agricultural production (k3E, see fig 3.1 (a)).

33



4.2 Vegetation

Figure 4.1: Typical EWD routes (thin lines) as captured by cyclonic vorticity center tracks on
the ERAI data (1989-2009) for all EWDs detected at 850 hPa (Gomes et al., 2019).
Black lines indicate the coastline and federal states.

4.2 Vegetation

4.2.1 Strength of the Precipitation-Vegetation Link

A strong correlation between precipitation and vegetation was expected for the Caatinga SDTF

(Barbosa and Kumar, 2016; Barbosa et al., 2019; de Jesus et al., 2020). To verify this, non-

parametric spearman correlation and lagged linear models were applied for each precipitation-

vegetation time series pair. Low to intermediate correlations were found, with hotspots in the

central northern and western areas. The patterns of increased ρt & R2
t (fig. 3.9) matched de-

forestation and total human impact factors as reported by da Silva and Barbosa (2017). The

uplands exhibited weak or no significant correlation, as well as huge areas in the area of the

state Bahia, probably due to strong agricultural activities in these areas (Marengo et al., 2018).

The results of the lagged regression were similarly heterogeneous and explained 1 % to 66 %

variability in vegetation (R2
t ). Again, the highest values were in the central North and the West

of the region. While Rito et al. (2017) reported that precipitation is a much stronger control

on Caatinga vegetation than human acute and chronic disturbance, the areas of increased ρt &

R2
t lined up with findings of Antongiovanni et al. (2018) (see fig. 4.2). The authors reported

more Caatinga remnants and the highest remaining Caatinga land cover in these areas. In areas
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Figure 4.2: Fragmentation patterns of the Caatinga SDTF at 10 km resolution (Antongiovanni
et al., 2018). Dark areas indicate more forest cover and less fragmented Caatinga
remnants. Thin black lines are coast lines and borders of the federal states, the thick
black line is the border of the Caatinga (sensu IBGE (2004)).

without strong orographic precipitation effects, the strength of the link between Caatinga veg-

etation and precipitation could therefore act as a proxy for human disturbance. However, the

strength of the correlations should be used from an exploratory, landscape scale point of view

due to the coarse spatial resolution, mixed pixel effects (Foody, 2004; Chen et al., 2018) and

issues regarding the linear model. The effects of agriculture can only be identified if the area is

big enough to clearly change the signature of the pixel (720 km2 to 770 km2 in the Caatinga).

Pixels which sharply stood out from their surroundings, for example in CVf and PEf , were

only observed along Rio São Francisco dam and in the Chapada Diamantina. Besides better

spatiotemporal resolution, generalized linear regression to adjust for the bounded response of

the FPAR variable, moving window analyses (e.g. Abel et al. (2020)) or analyses of spatial

patterns of model performance (e.g. bias) could provide further insights.
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4.2 Vegetation

4.2.2 Macroecological Vegetation Units

The strong effect of precipitation on SDTF species diversity, distribution, structure and produc-

tivity (Ruggiero et al., 2002; Rito et al., 2017) and the correlation between precipitation and

Caatinga vegetation (Barbosa and Kumar, 2016; Barbosa et al., 2019; de Jesus et al., 2020) lead

to the hypothesis of ”Caatinga regimes” - Regional, landscape scale areas of distinct Caatinga

vegetation dynamics that match the precipitation regimes presented in sections 3 & 4. They

were presumed to share dynamics and patterns with their precipitation regime, independent

of other local factors such as topographic, geologic, edaphic or floristic settings. Splitting the

spatiotemporal parameters of FPAR into groups according to the precipitation clusters k3N ,k3E

and K3S yielded significantly different subgroups for all tested vegetation-based parameters (see

section 3) besides trends (TSf ). The results supported the hypotheses of subregional similar-

ity of vegetation dynamics, even across ecoregions, as presented in da Silva et al. (2017). Due

to the coarse spatial resolution of the vegetation data at hand, final conclusions on species or

community level are not possible. However, the results allowed for interpretations on a regional,

landscape scale. The findings heavily imply varying gradients of species distributions, com-

munity structure and functional traits related to drought sensitivity according to the influence

zones defined in sections 3, 4.1.1 & 4.1.2.

4.2.3 Long-term Changes in Vegetation Productivity

Vegetation exhibited significant changes in more than half of the region. In contrast to the

strong link of precipitation and vegetation dynamics, trends of precipitation and vegetation

were not related and overlapped in merely <8 % of the area. The majority of detected FPAR

trends were positive, indicating that for the years 1982-2016, the Caatinga acted as carbon sink

in terms of aboveground primary productivity as captured by FPAR. Given the extraordinary

dry conditions during the 1980s in the Caatinga (de Medeiros et al., 2020), regeneration of

vegetation conditions could play a role in the observed positive trends, as rebound effects of

vegetation after the droughts during the 1970s and 1980s have been discussed as a source of

the greening of the Sahel (Olsson et al., 2005). However, especially in the light of new droughts

after 2010 (Marengo et al., 2018), other factors seem to be more important. Trends in primary

productivity have been explained by structural changes in vegetation composition, or CO2 fer-

tilization (Brandt et al., 2019; Abel et al., 2020). Due to CO2 fertilization, the increase in water

use efficiency of photosynthesis with rising atmospheric CO2 levels has long been anticipated

to lead to increased foliage cover in warm and dry environments (Farquhar, 1997). This effect

has been globally confirmed in numerous studies, using satellite and in situ observations and

facilitates changes towards woodier and more densely vegetated landscapes (Buitenwerf et al.,

2012; Donohue et al., 2009; Morgan et al., 2007; Lu et al., 2016). For areas where water is the

limiting factor for vegetation growth, Donohue et al. (2013) reported an CO2 induced increase
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in green foliage cover of around 11 %. Adjusted to their time period (1982-2010), the results of

this study are well in line with an average increase of 10.31% (see supplemenary materials, fig.

5.16), explaining most of the observed positive trends, especially in the absence of precipitation

trends. Changes in vegetation type may also affect the changes. In semi-arid grasslands and

woodlands, annual and perennial species differ in their response (e.g. for NDVI: Dall’Olmo and

Karnieli (2002)). Irregular precipitation regimes and changing timing are reported to favour

woody vegetation (Zhang et al., 2018). Newingham et al. (2013) reported no increase in dryland

perennial plant biomass after 10 yr of CO2 fertilization, which would additionally hint towards

an increase of woody biomass and not an increase of perennials in the positively trending areas

in the Caatinga. With the data at hand, it is unfortunately not possible to ultimately decipher

if the observed changes result from CO2 fertilization or structural changes in vegetation compo-

sition.
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5 Conclusion

The major influence zones of large-scale atmospheric systems in the Caatinga were delin-

eated for the first time, using spatially explicit PAM clustering of gauge-based precipitation

data. While the eastern and southern clusters exhibited similarities, all obtained zones pos-

sessed distinct precipitation regimes and long-term dynamics. Their characteristics were found

to govern Caatinga SDTF dynamics. FPAR data could be split into three significantly differ-

ent marcoecological units (termed Caatinga regimes) according to the precipitation clusters.

These were superimposed on the vegetation, across local geologic, edaphic, floristic settings or

anthropogenic disturbance regime. Precipitation and vegetation did not exhibit common long-

term trends. Vegetation exhibited spatially heterogeneous linkage to precipitation, with a higher

correlation in areas that are reported to be less impacted by anthropogenic disturbance (Anton-

giovanni et al., 2018).

In conclusion, the findings showed that three distinct macroecological units exist within the

Caatinga STDF, which are governed by and follow the dynamics of the prevailing precipitation

regimes. With an expected increase in interannual variability of rainfall (Kharin et al., 2007;

Field et al., 2012), increasingly unpredictable seasonality and an altered number of heavy rainfall

and drought events (Smith, 2011; Fischer et al., 2013), a better spatiotemporal characterisation

of precipitation regimes is (Zhang et al., 2018). The nuanced control of precipitation regimes on

dryland vegetation dynamics has only recently come into the focus of environmental research

and current models possibly underestimate the crucial role of dryland ecosystems for the global

carbon balance (Poulter et al., 2014; Ahlström et al., 2015; Ouédraogo et al., 2016; Biederman

et al., 2017; Brandt et al., 2018). Understanding relationships between precipitation regimes

and land surface phenology in seasonally dry tropical forests is of fundamental significance for

modelling tropical vegetation dynamics, quantifying their carbon budget and predicting their

future response to climate changes.
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Supplements

Table 5.1: Cluster comparisons with Wilcoxon-Mann-Whitney Test, exact p.values

1-2 1-3 2-3

MAP 0.00e+00 0.00e+00 1.96e-02
CVp 4.36e-09 1.63e-05 6.60e-17
PCI1 0.00e+00 0.00e+00 3.27e-18
PCI2 1.22e-12 1.49e-06 3.91e-22
PCI∆ 6.12e-37 3.17e-101 1.54e-11
TSp 7.16e-11 8.88e-07 1.35e-08
PEp 1.90e-87 3.33e-123 3.29e-01

MAMF 0.00e+00 9.29e-12 8.18e-16
CVf 1.74e-04 2.97e-05 0.00e+00
TSf 7.04e-01 1.59e-06 4.80e-05
PEf 2.44e-52 1.45e-15 0.00e+00

ρt 4.40e-11 1.15e-02 4.32e-06
R2
t 3.40e-14 2.19e-13 2.35e-01

Table 5.2: Cluster comparisons with Watson-Wheeler Test for circular data, exact p.values

k3N -k3E k3N -k3S k3E-k3S

ONSp 1.39e-37 1.39e-123 1.84e-82
PEAKp 5.66e-29 1.72e-102 2.66e-59

ONSf 4.49e-09 1.42e-40 5.26e-35
PEAKf 1.03e-26 1.03e-66 1.15e-20
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Figure 5.1: SRTM 90m altitude (Jarvis et al., 2008) aggregated to 0.25° resolution
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Figure 5.2: Screeplot plot.

Figure 5.3: Gap Statistic (Tibshirani et al., 2001).
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Figure 5.4: Silhuette plot.

64



Bibliography

16°S

14°S

12°S

10°S

8°S

6°S

4°S

44
°W

42
°W

40
°W

38
°W

36
°W

Cluster

1

2

3

Figure 5.5: Spatial representation of the results of clustering FPAR data with k = 3.
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Figure 5.10: Theoretical scaling of the PCI. Low sensitivity for distributions without zero pre-
cipitation months (Oliver, 1980; Michiels et al., 1992).

Figure 5.11: Rose diagrams of ONSp distribution of the precipitation clusters 1982-2016.
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Figure 5.12: Rose diagrams of PEAKp distribution of the precipitation clusters 1982-2016.
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Figure 5.14: Representation of the precipitation time series in the Entropy-Complexity plane
(HxC) (Rosso et al., 2012). Each dot represents one time series, colors according to
precipitation cluster memberships. Black lines are the theoretical limits, the pink
line represents k-noise (”colored” noise, 1/fβ exponents from 0-4.
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Figure 5.15: Schematic representation of the classification of time series in the Entropy-
Complexity plane (HxC) (Rosso et al., 2012), taken from Sippel et al. (2016).
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Figure 5.17: Spatial spearman rank correlation ρS of the parameters (p < 0.05).
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Figure 5.18: Coefficients of determination for spatial regressions adj.R2 of the parameters (p <
0.05).
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Figure 5.19: Boxplots of the spatiotemporal parameters (rowwise: CVf & PEf , MAMF & MAP,
CVp & PEp). Subgroups according to precipitation cluster memberships. Testing
for dependent data via the nonparametric Wilcoxon rank-sum Test (Bauer, 1972;
Hollander et al., 1999); significance levels: ∗∗∗ <0.001, ∗∗ <0.01, ∗ <0.05, − >0.05.
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Figure 5.20: Boxplots of the spatiotemporal parameters (rowwise: TSf & R2
t , TSp & PCI1, PCI2

& PCI∆, ρt). Subgroups according to precipitation cluster memberships. Testing
for dependent data via the nonparametric Wilcoxon rank-sum Test (Bauer, 1972;
Hollander et al., 1999); significance levels: ∗∗∗ <0.001, ∗∗ <0.01, ∗ <0.05, − >0.05.
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List of Abbreviations

Symbol Description

SDTF Seasonally Dry Tropical Forest

FPAR Fraction of Absorbed Photonsynthetic Active Radiation

PAM Partitiong around Medoids Clustering (Kaufman and Rousseeuw,

1990)

TS Theil-Sen Estimator (Sen, 1968)

GPP Gross Primary Productivity

MAP Mean Annual Precipitation

NEB Northeast Brazil

ITCZ Inner Tropical Convergence Zone

SST Sea Surface Temperature

EWD Easterly Wave Disturbances

SASA South Atlantic Subtropical Anticyclone

CF Cold Fronts

SACZ South American Convergence Zone

SNEB south Northeast Brazil

ENEB east Northeast Brazil

NNEB north Northeast Brazil

ENSO El Niño/Southern Oscillation

PDO Pacific Decadal Oscillation

NAO North Atlantic Oscillation

GPCC Global Precipitation Climatology Centre

WGS World Geodetic System

PAR Photosynthetic Active Radiation

CO2 Carbondioxide

NOAA National Oceaninc and Atmospheric Administration

CDR Climate Data Record

LAI Leaf Area Index

FTP File Transfer Protocol

IBGE Instituto Brasileiro de Geografia e Estat́ıstica

MMA Ministério do Meio Ambiente

SIRGAS Sistema de Referencia Geocéntrico para las Américas geocentric

reference system
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MAMF Mean Annual Maximum FPAR

MF Mean FPAR

MAR Mean Annual Range FPAR

CV Coefficient of Variation

PCI Precipitation Concentration Index

ITQ Information Theory Quantifier

PE Permutation (Shannon) Entropy

MPR Mart́ın-Platino-Rosso statistical complexity

PEp Permutation Entropy of Precipitation

MPRp Statistical complexity of Precipitation

PEf Permutation Entropy of Vegetation

MPRf Statistical complexity of Vegetation

PDF Probability Density Function

MAXp Precipitation Season Median Maximum Month

ONSp Precipitation Season Median Onset Month

MAXf Vegetation Season Median Maximum Month

ONSf Vegetation Season Median Onset Month

IQR Interquartile Range

ρ Correlation Coefficient

R2 Coefficient of Determination

hPA Hectopascal
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