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Abstract

Snow cover is an important indicator of climate change and a central component of the
hydrological cycle in Central Asia. The Pamir Mountains are a key region regarding
Central Asia’s fresh water resources. This study aims to examine changes of snow
cover extent (SCE) and duration (SCD) within the Pamirs from 2001 to 2018 to better
resolve small-scale differences within the region. The analysis was conducted based on
the daily snow cover product of the Moderate Resolution Imaging Spectroradiometer
(MoDIs). To remove cloud cover, areas with over 60 % gaps were excluded and a simple
temporal gap filling was applied. Data accuracy was assessed with Landsat 5 (TM)
images on two days with different snow conditions. Validation results demonstrate
that MODIS generally mapped snow cover with a reasonable accuracy. Nonetheless,
MODIS slightly overestimated and considerably underestimated snow cover in certain
conditions. The snow cover analysis results demonstrate that snow cover in the Pamirs
has decreased. Although the decrease was not significant for the Pamirs as a whole,
significant snow cover reductions were found especially in the Eastern Pamirs. Strong
reductions in mean annual SCE of —2.0 to —5.4 % per year were found in the Eastern
Pamirs in winter. In contrast, significant positive trends were marginal across the
Pamirs throughout all seasons. While no direct assessment of potential causes for the
snow cover changes was conducted, results indicate that a decrease in precipitation
might be the decisive factor for the observed reductions in the Eastern Pamirs.

Zusammenfassung

Schneebedeckung ist ein wichtiger Indikator fiir den Klimawandel und ein zentraler
Bestandteil des Wasserkreislaufs in Zentralasien. Das Pamir-Gebirge ist eine Schliis-
selregion hinsichtlich der Siifswasserressourcen Zentralasiens. Die vorliegende Studie
zielt darauf ab, Verdnderungen der Schneedeckenausdehnung (SCE) und -dauer (SCD)
innerhalb des Pamir-Gebirges von 2001 bis 2018 zu untersuchen, um kleinrdumige Un-
terschiede innerhalb der Region besser aufzulésen. Die Analyse wurde auf der Grundlage
des téglichen Schneedeckenprodukts des Moderate Resolution Imaging Spectroradiome-
ter (MODIS) durchgefithrt. Um Wolkenbedeckung zu entfernen, wurden Bereiche mit
iber 60 % Datenliicken ausgeschlossen und ein einfaches zeitliches Liickenfiillen durchge-
fithrt. Die Genauigkeit der Daten wurde mit Landsat 5 (TM) Bildern an zwei Tagen mit
unterschiedlichen Schneeverhéltnissen bewertet. Die Ergebnisse der Validierung zeigen,
dass MODIS die Schneebedeckung generell mit angemessener Genauigkeit abbildete.
Nichtsdestotrotz hat MoDIS die Schneebedeckung unter bestimmten Bedingungen leicht
iiberschétzt und auch deutlich unterschétzt. Die Ergebnisse der Analyse der Schneebe-
deckung zeigen, dass die Schneebedeckung im Pamir zuriickgegangen ist. Obwohl
der Riickgang fiir den Pamir als Ganzes nicht signifikant war, wurden signifikante
Verminderungen der Schneebedeckung insbesondere im Ost-Pamir festgestellt. Starke
Verringerungen der mittleren jihrlichen Schneebedeckung von —2,0 bis —5,4 % pro
Jahr wurden im Ost-Pamir im Winter gefunden. Signifikant positive Trends waren im
Gegensatz dazu im Pamir iiber alle Jahreszeiten unbedeutend. Obwohl keine direkte
Bewertung von mdglichen Ursachen fiir die Verdnderung der Schneebedeckung durchge-
fiihrt wurde, deuten die Ergebnisse darauf hin, dass ein Riickgang des Niederschlags der
entscheidende Faktor fiir die beobachteten Verringerungen im Ost-Pamir sein kénnte.
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1 Introduction

1.1 Relevance

As a part of the cryosphere, snow is an important component of the Earth’s
climate system (Vaughan et al., 2013). The cryosphere is often referred to as
the “natural thermometer” of the Earth’s climate (Vaughan et al., 2013). The
fiftth iPcC Assessment Report illustrated that there is a general decline in all
components of the cryosphere because of rising temperatures (Vaughan et al.,
2013). However, the cryosphere is not only influenced by the climate, it is also a
crucial factor influencing the climate through strong albedo feedbacks (Flanner
et al., 2011; Groisman et al., 1994) and other weaker feedbacks like carbon release
due to permafrost thaw (Stieglitz et al., 2003).

Snow cover is particularly important, because it responds very quickly to
climate change (Brown and Mote, 2009; Cubasch et al., 2013; Hall and Qu,
2006; Lemke et al., 2007) and is often a crucial component in the hydrological
cycle (Barnett et al., 2005; Li et al., 2017; Verbunt et al., 2003). The fifth 1pPcC
Assessment Report therefore described northern hemispheric snow cover extent
as a “key indicator of climate change” (Vaughan et al., 2013).

The Pamirs are a high mountain area in Central Asia. As highlighted by the
IPCC special report in 2018, high mountain regions like the Pamirs are regarded
as “climate change hotspots”, due to their hydrological importance and their
particularly vulnerable ecosystems (Hoegh-Guldberg et al., 2018). One of the
major rivers of Central Asia, the Amu Darya river, originates from the Pamirs,
making the Pamirs a key region regarding Central Asia’s fresh water resources
(Glantz, 2005). As a crucial water resource for countries within the Amu Darya
Basin, the river has also been a source of conflict between the countries (Glantz,
2005; Lioubimtseva and Henebry, 2009). Changes in the Pamirs’ cryosphere,
which feeds the Amu Darya, are thus important to observe (Glantz, 2005). In
addition, snow cover changes in the Pamirs are also important for the local
communities’ livelihoods, since the predominant occupations in the Pamirs are
farming and livestock production (Breu and Hurni, 2003; Kassam et al., 2018).
Changes in the snow covered area, for instance, have implications on the herders’
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seasonal use of pastures (Kassam et al., 2018).

Recent studies researching cryosphere changes in the Pamirs indicate that the
response of the cryosphere to climate change might be regionally differentiated
(Knoche et al., 2017; Zhou et al., 2017). To better resolve small-scale changes
of the cryosphere within the Pamirs, a detailed analysis of the spatio-temporal
snow cover variability in the Pamirs was conducted. For this purpose, this study
examined changes of snow cover extent (SCE) and snow cover duration (SCD)
over the past 18 years.

1.2 Theoretical Background

1.2.1 Snow characteristics

Snow formation. Snow is a part of the cryosphere, which describes all parts of
the Earth where water is in a frozen state (Barry and Gan, 2011). The cryosphere
includes snow cover, sea ice, lake ice, river ice, glaciers and ice sheets, and frozen
ground (1PCC, 2013). Snow is precipitation in form of ice crystals, which are
formed in clouds with saturated air below 0 °C (Barry and Gan, 2011; Dong, 2018).
The nature of a crystal mainly depends on the temperature and saturation vapor
pressure during its formation (Barry and Gan, 2011). Because of the countless
combinations there is an enormous amount of different snowflakes (Magono and
Chung, 1966). In case atmospheric and ground temperatures are sufficiently low,
a snowfall event can create a snow cover.

Snow metamorphism and dependencies. As soon as the snow falls on the
ground, it starts undergoing changes in its physical properties (Barry and Gan,
2011; Goodison et al., 1999). Time- and temperature-dependent processes like
compaction, settling, freeze-thaw cycles and water vapor diffusion alter the snow’s
density, thermal conductivity and albedo (Barry and Gan, 2011; Goodison et al.,
1999). This process is called snow metamorphism (Goodison et al., 1999). The
aging of snow consequently introduces heterogeneity in the snow cover properties.
Hence, various classifications schemes for snow cover exist (Sturm et al., 1995).
Whether a freshly developed snow cover will last only for a short time or will
cover the ground for a longer period can depend on a variety of factors. The two
most important factors usually are atmospheric temperature and precipitation
(Brown and Mote, 2009; Déry and Brown, 2007; Li et al., 2018; Scherrer and
Appenzeller, 2006; Vaughan et al., 2013). The extent that is covered by snow on
the northern hemisphere is strongly anticorrelated with atmospheric temperature,
especially in spring (Brown and Robinson, 2011; Déry and Brown, 2007; Karl
et al., 1993; Lemke et al., 2007). In general, atmospheric temperature affects a

2
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snow cover in two ways: First, atmospheric temperature affects snow formation
by determining whether precipitation occurs as snow or rain (Brown and Mote,
2009; Lemke et al., 2007). Second, it substantially determines snowmelt (Brown
and Mote, 2009; Lemke et al., 2007). Precipitation primarily has a positive effect
on the duration of a snow cover (Brown and Mote, 2009). In form of snowfall
precipitation consequentially increases the persistence of a snow cover (Brown and
Mote, 2009). Rainfall, however, has a slight negative effect by transferring heat
to the snow cover (Wever et al., 2014). Besides temperature and precipitation,
the persistence of a snow cover also depends on the surface energy balance (SEB),
since snow still absorbs some shortwave radiation and much longwave radiation
(Zhang, 2005). Other factors that can be very important particularly in mountain
areas like the Pamirs, are wind and complex topography. During so-called “rain-
on-snow” events, for instance, high winds together with warm air temperatures
and high humidity considerably enhance snowmelt (Berris and Harr, 1987; Marks
et al., 1998; Wever et al., 2014). Another example is the redistribution of snow
by wind (Pomeroy et al., 1997; Wayand et al., 2018; Winstral and Marks, 2002).
Complex topography can be a major factor, since it does not only influence
the redistribution of snow, but also influences other factors like precipitation,
temperature or radiation (Elder et al., 1991; Goodison et al., 1999; Wayand et al.,
2018). Some further factors that influence snow cover persistence are avalanches
(Elder et al., 1991), vegetation (Berris and Harr, 1987; Pomeroy et al., 1998)
and pollution (Clarke and Noone, 1985; Doherty et al., 2010). Thus, due to the
various influences, not only the snow cover properties, but also the snow cover
extent can be very heterogenic.

Snow metrics. To address the often present heterogeneity, different metrics
of snow have been defined for studying snow cover. The 1PCC (2013) defined
five different metrics of snow: snow cover extent (SCE), the seasonal sum of
daily snowfall, snow depth (SD), snow cover duration (SCD) and the snow water
equivalent (SWE) (Vaughan et al., 2013). In this context, snow cover extent is
defined as the area that a snow cover takes up, snow cover duration is described
as the number of days, on which the snow is exceeding a certain threshold depth,
and the snow water equivalent is defined as the depth of water that would result
when a certain mass of snow would melt completely (Vaughan et al., 2013). Each
of these metrics has its own importance and the metrics to choose for a study
usually depend on the exact research question or the data availability. SCE and
SCD, for instance, are of particular importance for studies researching the SEB
(e.g. Flanner et al., 2011). On the other hand, SD and SWE are valuable metrics
for evaluating effects of snow cover on the hydrological cycle (e.g. Elder et al.,
1991). Likewise, not only the effects of the different metrics differ, but also their
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dependencies. Whereas SCE and SCD, for instance, are strongly influenced by
the atmospheric temperatures at the start and end of the snow season, SD and

SWE are more sensitive to the number of snowfall events (Brown and Mote,
2009).

Properties of snow. Snow has unique radiative and thermal properties. These
properties lead to a snow cover considerably altering the surface radiation balance
(SRB) and consequently the SEB (Goodison et al., 1999; Zhang, 2005).

One major reason for the importance of snow are its radiative properties.
Snow has very high reflective properties in the visible spectrum (VIS) combined
with low reflective properties in the shortwave infrared (SWIR) (Riggs et al.,
2016; Zhang, 2005). In addition, snow has a high emissivity (Zhang, 2005). The
superlative reflective properties in the VIS lead to the snow’s high albedo (Fig.
1.1). The albedo of an object or a surface indicates the fraction of solar radiation
that is reflected by it (1PCC, 2013). In remote sensing products the snow’s high
albedo is often used to identify snow cover (Tedesco, 2015). However, depending
on the condition of the snow, its albedo can vary (Fig. 1.1) (Doherty et al., 2010;
Warren, 1982; Wendler and Kelley, 1988). If the snow is fresh, its albedo can
exceed 90 % under certain conditions (Wendler and Kelley, 1988). Conversely,
in case the snow is old and/or dirty its albedo is reduced significantly (Doherty
et al., 2010).
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Figure 1.1: Reflectance of different ice surfaces (Hall and Martinec, 1985. Adapted from
Qunzhu et al., 1984)

Another important property of snow cover is its low thermal conductivity.
The low thermal conductivity is a result of the large fraction of air within a
snow cover (Zhang, 2005). In a sense, a snow cover acts as a thermal insulator:
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it can strongly inhibit heat exchange between the atmosphere and the ground
(Goodison et al., 1999; Stieglitz et al., 2003). On the one hand a snow cover’s low
thermal conductivity can reduce ground cooling due to heat loss from the surface
to the atmosphere, while on the other hand it can also reduce ground warming
due to heat transfer from the atmosphere to the surface (Zhang, 2005). Hence,
snow cover is crucial for the ground thermal regime and consequently the active
layer and permafrost (Goodison et al., 1999; Zhang, 2005).

Influence of snow on the surface energy balance. The presence of a snow
cover usually strongly alters the surface energy balance (SEB) (Goodison et al.,
1999). The way in which a snow cover alters the SEB is depending on various
factors like the initial surface or snow metamorphism, and is thus very specific
(Zhang, 2005). Typically, the snow’s high albedo directly affects the surface
radiation balance (SRB) by increasing the reflected fraction of the incoming
shortwave radiation (Wendler and Kelley, 1988). Conversely, the snow’s high
absorptivity increases the amount of absorbed longwave radiation, while the high
emissivity increases the outgoing longwave radiation (Zhang, 2005). In addition,
the extremely low thermal conductivity of snow cover can significantly dampen
the ground heat flux (Zhang, 2005). Furthermore, snowmelt also affects the latent
heat flux (Goodison et al., 1999; Zhang, 2005).

Importance of snow. The area frequently covered by snow is vast (Barry and
Gan, 2011; Groisman et al., 1994; Lemke et al., 2007). Due to its ability to store
and release water, its low thermal conductivity and its high albedo and other
properties a snow cover can be important for various scientific fields. Snow is an
important component in climate research (Hantel and Maurer, 2011; Scherrer
and Appenzeller, 2006; Vaughan et al., 2013) and often a crucial component in
the hydrological cycle (Barnett et al., 2005; Li et al., 2017; Verbunt et al., 2003).
Apart from ecological impacts, changes in snow cover can also have a serious
economic impact (Burakowski and Magnusson, 2012; James et al., 2014; Sturm
et al., 2017).

Snow cover is an important factor to consider in regard of climate change,
since the SEB is a major determinant for atmospheric temperatures (Goodison
et al., 1999). Not only can changes in SCE influence atmospheric temperatures, a
snow cover itself is also very sensitive to temperature changes (Brown and Mote,
2009). This leads to the so-called “snow-albedo feedback” (Qu and Hall, 2013) or
more generally “ice-albedo feedback”(1PCcc, 2013): warmer temperatures lead to a
reduction in surface albedo due to snow metamorphism or snow cover shrinkage,
which in turn leads to an amplified warming (Barry and Gan, 2011; Goodison
et al.,, 1999; Qu and Hall, 2013; Vaughan et al., 2013). In contrast, cooler
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temperatures would have an opposite effect (Barry and Gan, 2011). Although
the interaction of snow cover with temperature is complicated by other processes
like atmospheric circulation (Cohen and Rind, 1991), the snow-albedo feedback
is considered an important climate feedback mechanism (Cubasch et al., 2013;
Flanner et al., 2011; Groisman et al., 1994). Thus, the sensitivity of snow to
temperature and precipitation changes makes SCE and SCD important indicators
of climate change.

Furthermore, snow is an important source for fresh water (Barnett et al.,
2005). The ability to store and release water makes snow a crucial component in
the hydrological cycle (Barnett et al., 2005; Goodison et al., 1999; Li et al., 2017;
Verbunt et al., 2003). In many regions and especially mountainous regions like
the Pamirs, water resources for irrigation, drinking water or energy production
depend on snowmelt (Barnett et al., 2005; Li et al., 2017; Vaughan et al., 2013).
With regard to the expected reductions in snow cover in context of climate change,
such regions are likely to face an increasing risk of water scarcity (Barnett et al.,
2005). Moreover, the release of water from snowmelt can also cause floods during
rain-on-snow events or more generally due to changes in the seasonal stream-flow
patterns (Hamlet and Lettenmaier, 2007; Marks et al., 1998).

1.2.2 Remote sensing of snow

Technique. Remote sensing techniques for snow take advantage of the snow’s
unique radiative properties (Sect. 1.2.1). Sensors used in remote sensing for snow
detection can generally be divided in two kinds: optical sensors and microwave
sensors, whereby microwave sensors can be further divided in active (AM) and
passive (PM) microwave sensors (Dong, 2018).

Both AM and PM have the major advantage that measurements are not
restricted by clouds (as long as there is no precipitation) or nighttime conditions,
since they are independent of the solar radiation (Foster et al., 2005). However,
the interaction of snow with microwave radiation is complex and other factors like
vegetation further complicate an accurate detection (Dong, 2018; Foster et al.,
2005). Furthermore, PM is only available in low spatial resolution, since the
microwave signal emitted from the Earth’s surface is only weak (Dong, 2018).
Therefore, the Global Observing System for Climate (GCOS) describes current
PM data as inadequate for snow detection in complex terrain (WMO, 2011).
Although AM can have high spatial resolution, it can only detect wet snow (Konig
et al., 2001).

Optical sensors, on the other hand, depend on the reflective part of the
spectrum and are therefore limited to daytime and cloud free conditions (Dong,
2018). Clouds, especially, are problematic, since they not only block observations,
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but can also lead to misclassifications (Dong, 2018; Hall and Riggs, 2007; Riggs
et al., 2016). While water clouds can be differentiated reasonably well from snow,
confusion of snow and ice clouds is common (Dong, 2018). Apart from that,
also cloud or terrain shadow can lead to false classifications (Hall and Riggs,
2007; Riggs et al., 2016; Sorman et al., 2007). Nonetheless, optical sensors have
the major advantage that they typically offer a high spatial resolution and are
available for comparatively long time periods (Dong, 2018).

One commonly used technique for snow detection with optical sensors is the
Normalized Difference Snow Index (NDsI) (Hall and Riggs, 2011). Analog to
the Normalized Difference Vegetation Index (NDVI) (Tucker, 1979), the NDSI
is a technique based on the ratio of reflectances (Hall and Riggs, 2011). By
comparing the reflectance in the VIS and SWIR, the NDSI can reliably detect
snow cover (Hall and Riggs, 2011). Other detection techniques are traditional
supervised multispectral classifications, spectral-mixture modeling and neural-
network analyses (Hall et al., 2001; Rittger et al., 2013).

Advantages & limitations. Remote sensing of snow excels in providing data
for a large spatial extent and space-filling observations while at the same time
providing consistent data (Dong, 2018; Sturm, 2015). In addition, the cost and
work effort for end users of satellite products is usually comparatively low (Sturm,
2015). Conversely, costs for satellite missions are high (Sturm, 2015).

Limitations of remote sensing of snow are the indirect retrieval of snow
data by algorithms, the lack of the ability to measure all snow parameters,
cloud cover obstructions and cloud-snow confusion, concealed snow cover due to
canopy/vegetation and in some cases a limited spatial resolution (Dong, 2018;
Sturm, 2015). Moreover, due to the large spatial extent that remote sensing
usually provides, snow variations in small basins can be unnoticed (Sturm, 2015).
Thus, under certain conditions the application of remote sensing techniques for
snow detection, and the accuracy of the remote sensing measurements can be
problematic (Sturm, 2015). Therefore, a validation is usually necessary to assess
the accuracy of an applied remote sensing product.

Alternatives. Alternatives to remote sensing products for snow cover data are
generally field measurements or snow distribution models (Dong, 2018; Sturm,
2015).

Snow distribution models are often used for avalanche forecasting or climate
studies (Sturm, 2015). Their main advantage is that they enable future prediction
of snow conditions (Dong, 2018). However, the underlying physics are still not
entirely understood and such models require knowledge of boundary conditions
that are rarely known (Sturm, 2015).
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Another option to obtain snow cover data are field measurements. While
field measurements provide the most direct approach to measure snow cover and
usually yield good results, they are often only representative for a very small area
(Sturm, 2015). Moreover, for a better spatial coverage of field measurements, the
necessary working effort raises rapidly (Sturm, 2015).

1.3 Study Area

The Pamirs are a mountain area in Central Asia, that primarily lies within
Tajikistan, but there are also parts in the neighboring countries Kyrgyzstan,
Afghanistan, Pakistan and China. In figure 1.2, the study area (70.4-75.7° E,
36.3-39.9° N) is illustrated with a topographic map.

The study area can be divided in three parts: the Eastern and Western Pamirs
— where the division roughly follows the 73° longitude line — as well as the Alai in
the very north (Breu and Hurni, 2003). As reflected in figure 1.2, the Pamirs are
a high mountain region: more than 90 % of the study area lie above 2500 m a.s.1..

The Eastern Pamirs, including Murghab and Tashkurgan, are characterized
by cold and dry conditions (Miehe et al., 2001). The surrounding mountain
systems shield the Eastern Pamirs from moist winds from the Indian and Atlantic
Oceans, and thus create the desert like conditions (Breu and Hurni, 2003). The
continental climate leads to relatively cold summers and severe winters (Breu and
Hurni, 2003). While, precipitation in the Eastern Pamirs primarily occurs during
summer (Breu and Hurni, 2003; Miehe et al., 2001), precipitation is typically so
little, that summers in Murgab and Tashkurgan are generally arid (Miehe et al.,
2001). Climatic conditions in the Eastern Pamirs can be summarized as a “cold
high-mountain desert” (Vanselow et al., 2012).

The Western Pamirs, including Khorog, Savnob and Ishkashim, are char-
acterized by more humid and comparatively mild conditions (Breu and Hurni,
2003). In contrast to the Eastern Pamirs, precipitation is considerably higher,
and typically minimal in summer leading to arid summers (Breu and Hurni, 2003;
Miehe et al., 2001).

The Alai mountain range and valley in the north of the study area, including
Sary-Mogol and Sary Tash, are characterized by cold and humid conditions (Miehe
et al., 2001). In the Alai, precipitation is substantially higher than in the Eastern
Pamirs (Miehe et al., 2001). Temperatures recorded in Sary Tash are, however,
similar to the temperatures in Murgab (Miehe et al., 2001).
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Figure 1.2: Topographic map of the study area. The map is based on the digital surface
model of the Advanced Land Observing Satellite (ALOS) provided by the Japan Aerospace
Exploration Agency (JAXA) (JAXA, n.d.).

1.4 Current State of Research

Global changes. The fifth 1PCcC Assessment Report (2013) elucidated that
there is a general decline in all components of the cryosphere (Vaughan et al.,
2013). Mass budgets of glaciers and ice sheets around the world are negative
(Gardner et al., 2013). Furthermore, most snow metrics, including the SCE and
SCD, have been decreasing: northern hemispheric SCE has been decreasing over
the past 30 years (Derksen and Brown, 2012; Kunkel et al., 2016; Mudryk et al.,
2017), especially in spring (Derksen and Brown, 2012; Herndndez-Henriquez et al.,
2015). Likewise, the SCD has been declining, with the strongest decline in spring,
which is related to the reduction in spring SCE (Klein et al., 2016; Peng et al.,
2013; Shi et al., 2013). Moreover, research also indicates negative trends in the
SWE (Brown, 2000; Kunkel et al., 2016).

However, the response of snow cover metrics to climate change is complex.
While atmospheric temperature seems to be the dominant factor influencing snow
cover, the dependence of snow cover on precipitation and other factors complicates
the response (Brown and Mote, 2009; Brown and Robinson, 2011; Lemke et al.,
2007). At high latitudes and elevations, for instance, snow cover could increase,
when higher precipitation offsets the shortening of the accumulation season
(Brown and Mote, 2009). Hence, regional trends can differ from global trends.
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Changes in the Pamirs. Studies researching climate change in the Pamirs
indicate that air temperatures and precipitation have been increasing (Chevallier
et al., 2014; Finaev et al., 2016; Knoche et al., 2017; Yao et al., 2012), while
trends in glacier mass budgets were mostly balanced or increasing except for the
Southern Pamirs (Gardelle et al., 2013; Knoche et al., 2017; Yao et al., 2012).

In the Pamirs, average air temperatures have been increasing since the second
half of the 20th century (Chevallier et al., 2014; Finaev et al., 2016; Knoche
et al., 2017). Warming was especially pronounced in fall and winter seasons
(Finaev et al., 2016), while least warming occurred in summer (Finaev et al.,
2016; Knoche et al., 2017).

Furthermore, studies indicate that also average precipitation in the Pamirs has
increased since the second half of the 20th century (Finaev et al., 2016; Yao et al.,
2012). However, according to Finaev et al. (2016) changes in precipitation were
heterogeneous, with increases in high mountain areas and decreases in most other
areas. In addition, Finaev et al. (2016) found a continuous increase in winter
precipitation from 1981 to 2010. The study from Yao et al. (2012) indicated an
increase in precipitation in the Eastern Pamirs.

Studies on glacier mass balances in the Pamirs primarily indicate balanced or
increasing trends. However, they also indicate that trends differ depending on the
region. Yao et al. (2012) and Gardelle et al. (2013) found increasing or balanced
glacier mass budgets in the Eastern Pamirs and Western Pamirs respectively.
Gardelle et al. (2013) therefore proposed renaming the “Karakoram anomaly”
to the “Pamir-Karakoram anomaly”, because of the contradiction to the glacier
retreat on the global scale. While Knoche et al. (2017) also found increasing
trends in the Northern Pamirs, they found decreasing trends in the Southern
Pamirs.

Snow cover changes in the Pamirs. Recent studies indicate a decrease in
snow cover in the Pamirs, with a shift towards earlier snow melt in spring (Dietz
et al., 2014; Finaev et al., 2016; Li et al., 2018; Zhou et al., 2013, 2017).

Zhou et al. (2013) used a 8-day AVHRR data set from 1986 to 2008, which
was corrected with the 8-day MODIS snow cover product, to analyze snow cover
in the Amu Darya Basin in Central Asia. They detected significant decreasing
trends of SCD in the Southern, Eastern and Western Pamirs as well as in the
Alai (Zhou et al., 2013). In each case, the trend was accompanied with a shift
towards earlier snow melt (Zhou et al., 2013).

Dietz et al. (2014) conducted an analysis on snow cover changes in Central
Asia with a combination of AVHRR and MODIS remote sensing data. By combining
both sensors they were able to form a continuous data set from 1986 to 2014
(Dietz et al., 2014). While they found no significant trend for the overall SCD
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of Central Asia, their results indicated a trend towards earlier snow melt in the
Pamirs (Dietz et al., 2014).

Finaev et al. (2016) used Landsat images to calculate the SCE. During the
period from 1970 to 2008,/09 they found that the mean annual SCE has decreased
by 2.5 % across the Pamirs (Finaev et al., 2016).

In a later study, Zhou et al. (2017) used the 8-day AVHRR data set from
1986 to 2008 to conduct a more detailed analysis of the snow cover in Central
Asia. They found significant decreases of SCD on mountains in the Pamirs (Zhou
et al., 2017). On the other hand, they also found increasing trends in SCD in
mid-elevation areas in the Alai and Western Pamirs (Zhou et al., 2017). Both
increasing and decreasing trends were related to shifts in the snow cover melt
date (Zhou et al., 2017).

In the most recent study, Li et al. (2018) examined the snow cover variability
over the Tibetan Plateau during 2001 to 2014 with the 8-day MODIS snow cover
product. They found strong negative trends of 1.5 to 3.62 % SCE per year within
the Pamirs (Li et al., 2018). The decline in SCE was especially pronounced during
December to April (Li et al., 2018).

Expectations & Projections. Long term climate projections predict a wide-
spread decline of SCE, especially in spring (Brown and Mote, 2009; Brutel-Vuilmet
et al., 2013). Changes in SWE are expected as well, they depend, however, on the
balance between precipitation and temperature changes, which can differ regionally
(Collins et al., 2013). Implications of climate change on snow cover in mountain
areas like the Pamirs are expected to be a rise of the snow line and changes in SCD
and SWE (Beniston, 2003). In addition, a general decline in snow cover and an
asymmetrical shortening of the snow season with a stronger shortening at the end
of winter are expected (Magnusson et al., 2010). Furthermore, research indicates,
that changes of snow metrics are strongest in areas where the temperature is
close to the melting point for longer periods of the snow season (Brown and
Mote, 2009; Steger et al., 2013). In contrast, continental regions with dry and
cold conditions like the Eastern Pamirs showed lower temperature sensitivity in
climate projections (Brown and Mote, 2009). Projections for these drier climates
tended to be more mixed with increases in maximum SWE and decreases in SCD

(Brown and Mote, 2009).

1.5 Research Questions

The complex response of snow cover to climate change in high mountain areas
together with the not clear-cut cryosphere changes in the Pamirs call for a more
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detailed analysis of snow cover changes in the study area. Therefore the spatio-
temporal snow cover variability in the Pamirs was analyzed as a meaningful next
step to better resolve small-scale changes of the cryosphere within this region. For
this purpose, snow cover changes over the past 18 years were analyzed by using
the reliable Moderate Resolution Imaging Spectroradiometer (MODIS) remote
sensing data products. Two research questions have been formulated:

Has the snow cover extent (SCE) changed significantly
over the past 18 years?

The snow cover extent (SCE) represents the area that is covered by snow (Vaughan
et al., 2013). Hence, the SCE yields information about the spatial expansiveness
and the quantity of snow.

Finaev et al. (2016) and Li et al. (2018) found that the SCE has decreased
in the Pamirs. There are, however, no small-scale results available to assess
differences within the Pamirs. By means of this research question overall and
regional changes of the SCE in the Pamirs were analyzed, to assess the trend in
SCE of the last two decades and visualize differences within the study area.

Has the snow cover duration (SCD) changed significantly
over the past 18 years?

In this study, the snow cover duration (SCD) was defined as the number of
days during a certain time period, on which a certain area was covered by a
considerable amount of snow (Sect. 2.3.1). Contrary to the SCE, the SCD
additionally contains information about time related changes like the duration
of the snow season. Furthermore, the combination of SCE and SCD allows to
discern areas with short (long) but high (low) snow coverage.

Previous studies primarily indicate a decreasing trend in SCD in the Pamirs,
and a shift towards earlier snow melt in spring (Dietz et al., 2014; Zhou et al.,
2013, 2017). However, the results from Zhou et al. (2017) also indicate a positive
trend in SCD in certain areas. By means of this research question the overall and
regional changes of the SCD were analyzed, to assess the trend in SCD of the last
two decades, visualize regional differences in SCD trends and assess the potential
shift towards earlier snow melt in spring.
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2.1 Data

2.1.1 Optical remote sensing data

In this study, the remoteness and large spatial extent of the study area, together
with the need for a high temporal resolution and a consistent availability over a
long time period, led to the choice of remote sensing data. Furthermore, remote
sensing is suitable for SCE detection as indicated by the agreement between
different remote sensing products (Roesch, 2006).

An optical sensor was chosen, because of the in the introduction mentioned
advantages compared to microwave remote sensing (Sect. 1.2.2). Table 2.1 gives
an overview of the available data sets of optical sensors for snow detection.

Table 2.1: Overview of optical remote sensing sensors used for snow detection (adapted from
Dong, 2018). Satellites of data sets, which have been used in this study, are indicated in bold.

. Spatial Temporal .
Satellite Sensors Resolution [m] Resolution [d] Launch time
Landsat 1-3 MSS 79 18 1972
Landsat 4-5 wMSs/TM 30/120 16 1982
Landsat 7 ETM+/PAN 15/30/60 16 1999
Landsat 8 OLI/TIRS 15/30/100 16 2013
Terra MODIS 250/463* /1000 1 1999
Aqua MODIS 250/463* /1000 1 2002
NOAA AVHRR 1090 1 1978
SPOT 1-3 XS/PAN 10/20 26 1986
SPOT 4/5 XS /PAN 2.5/5/10/20 26 1998
SPOT 6/7 XS/PAN 1.5/6 26 2012
IKONOS XS/PAN 1/4 3 1999
ERS-2 ASTER-2 1000 2-3 1995
Worldview 2 XS/PAN 0.46,/1.84 1 2009
Worldview 3 XS/PAN/SWIR 0.31/1.24/3.70 <1 2014
Quickbird XS/PAN 0.65/2.62 1-3.5 2001
Envisat AATSR/MERIS 1000/300 2-3 2002

*  Nominal 500 m resolution, true spatial resolution is approximately 463 m (Roméan et al., 2004)
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2.1.2 MobDIs-Terra snow cover product (MOD10A1)

Out of the, in table 2.1 listed, choices the MODIS-Terra snow cover product was
chosen for the snow cover analysis.

For this study, high temporal and spatial resolution along with a long, consis-
tent recording period were required. The Global Observing System for Climate
(Gcos) recommends a daily temporal resolution and 100 m spatial resolution for
snow cover extent (SCE) studies in complex terrain (WMO, 2011). The long
recording period was required for a meaningful trend analysis. To adequately
meet these requirements, the daily MODIS snow cover product (MOD10A1) was
chosen. MOD10A1 offers a decent compromise between a high temporal and spatial
resolution, while still providing a long recording period (Tab. 2.1). Furthermore,
various studies confirm that the MODIS snow cover products are suitable for snow
detection in mountain areas (Crawford, 2015; Gascoin et al., 2015; Jain et al.,
2008; Sorman et al., 2007). An additional advantage of MODIS would have been,
that the sensor operates on two satellites: Terra and Aqua (Riggs et al., 2016).
This is can be utilized to improve the data availability (Gafurov and Bardossy,
2009; Wang and Xie, 2009). In this study, however, only MODIS-Terra was used
due to technical issues that prevented the acquisition of MODIS-Aqua data.

With the MODIS snow cover product series, the NASA already offers a set
of preprocessed products, which use the NDSI to specify the snow signal (Riggs
et al., 2016). The level-3 product MOD10A1 is a gridded product that contains the
“best” NDSI observations out of the available swaths for every day (Riggs et al.,
2016). An alternative would have been MOD10A1F, which was newly introduced
in collection 6 of the MODIS snow products (Riggs et al., 2016). MOD10A1F
represents a cloud-gap-filled data set that was created with a temporal gap filling
algorithm (Hall et al., 2010; Riggs et al., 2016). However, since MOD10A1F was
not yet available through the NASA’s National Snow and Ice Data Center (NSIDC)
at the time of this study and information on cloud cover would not have been
included, MOD10A1 was selected.

The selection of MODIS comes with the general disadvantages of optical sensors
mentioned in the introduction (Sect. 1.2.2). The most relevant disadvantages
for this study are problems related to cloud cover, since the Pamirs are a high
mountain area with frequent cloud cover.

2.1.3 Landsat 5 (TM)

Landsat 5 Thematic Mapper (TM) images were chosen as reference data for the
validation of MODIS.
Landsat images offer a high spatial resolution of 30 m (TM), and are frequently
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used to validate the MODIS snow cover products (Crawford, 2015; Dietz et al.,
2014; Gascoin et al., 2015). For the validation reference data, images with a
high spatial resolution are required to ensure an accurate detection of snow cover.
While the temporal resolution of Landsat images is too low for the use in the
actual snow cover analysis, it is sufficient for validation purposes.

Apart from Landsat 5, also Landsat 7 and 8 operated within the analyzed
time period. For the validation, days in spring 2008 and 2009 were chosen (Sect.
2.2). Therefore, only Landsat 5 and 7 images were possible options, since Landsat
8 started operating in 2013 (Tab. 2.1). Landsat 5 images were then preferred
over Landsat 7, because the images in Landsat 7 contain artifacts since 2003.
After cloud cover conditions were considered, two images of Landsat 5 (TM) were
chosen.

2.2 Validation with Landsat 5 (TM)

2.2.1 Landsat processing

Validation area & date. Only a part of the study area was validated with
Landsat images due to its large spatial extent. The validation area was selected
based on the results of the snow cover analysis (Sect. 3.2.1). For the chosen
area two days with different snow conditions were selected. The exact dates were
selected based on snow conditions, the availability of Landsat 5 images and cloud
coverage conditions (Sect. 3.2.1). The Landsat images on the chosen days were
then used as reference data for the later validation of the gap filled MODIS data
set, which underlies the snow cover analysis.

The reason for selecting two images with different snow conditions was, that
in this way the accuracy of the applied MODIS data set could be verified under
different conditions. Furthermore, images from spring of consecutive years were
chosen, since spring offered different snow conditions, while at the same time
having less cloud cover than winter. Another advantage of using images from
the same season in consecutive years was, that differences in other factors, like
illumination conditions, were reduced.

Acquisition. The freely available level-2 Landsat 5 (TM) images were acquired
using the Earth Explorer client from the U.S. Geological Survey (USGS).

The level-2 product was chosen, since level-3 products, which would have
been already classified, were only available for a part of the U.S. and Alaska.
In addition to the basic terrain corrections of the level-1 product, the level-2
product has been further processed with radiometric calibration and atmospheric
correction algorithms (USGS, n.d.).
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NDSI calculation. First, the acquired Landsat images had to be adjusted with
the respective scale factor and grid cells, with values outside the valid range, had
to be removed. Next, the NDSI was calculated using equation (2.1) as specified for
Landsat TM in MODIS’s algorithm theoretical basis document (Hall et al., 2001).
Subsequently, negative NDSI values were set to 0, to obtain the same NDSI scale
as in the MODIS snow cover products and to ensure that negative NDSI values
would not interfere with the later aggregation of grid cells.
TM Band 2 — TM Band 5

NDSI = 2.1
5 TM Band 2 + TM Band 5 (2.1)

Although it slightly complicates the interpretation of the validation results, it
was chosen not to validate the FSC, but rather the NDSI out of three reasons:
First, equation 2.2, which was used to derive the FSC from MODIS’s NDSI obser-
vations, does only apply to MODIS. The equation was derived by comparing NDSI
observations of MODIS with FSC calculations based on Landsat (Salomonson and
Appel, 2004, 2006). Second, other approaches for obtaining a FSC Landsat image
would have introduced more uncertainty. Third, the validation of the NDSI offers
a better assessment of the accuracy of the data set, since the NDSI contains more
information than the FSC.

1st cut, reprojection & 2nd cut. Next, the images were cut slightly to
reduce memory strain while at the same time still leaving a large enough image
to be able to later remove edge effects with a second cutting step. For this, the
spatial extent of the image was trimmed from the original extent to 73.25-74.95°
E, 37.00-38.10° N.

Afterwards, the images were reprojected form the UTM projection, in which
they were originally delivered, to the sinusoidal projection, which MODIS uses.
Such a reprojection requires a resampling of the grid cells (Jensen, 2005). In this
study a bilinear interpolation method was chosen for calculating the new cell
values. This method derives the values of the new grid cells by calculating the
distance based weighted average of the four nearest cells (Jensen, 2005). Since
the NDSI is cardinal scaled rather than ordinal scaled, the bilinear interpolation
yields more accurate values for the new grid cells. It was decided to reproject
the Landsat images rather than MODIS, because the resampling errors might be
smaller for the Landsat images with their higher spatial resolution.

Following the reprojection, the Landsat images were trimmed to the validation
area extent (73.35-74.85° E, 37.10-38.00° N). This second cut ensured that edge
effects created from the reprojection were removed.
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Aggregation & resampling. Next, the high resolution Landsat images were
aggregated and then resampled to obtain the exact same spatial resolution as the
MODIS images.

An aggregation mask of 15 x 15 cells was used. The new value of an aggregated
grid cell was computed by averaging all grid cells in the aggregation mask. When
there were NA (“not available”) values present in the aggregation, the entire new
cell was set to NA. This was done to not further reduce the accuracy of the
Landsat images. After the described aggregation, the spatial resolution of the
aggregated Landsat images was 450 x 450 m. A resampling step was therefore
necessary to reach MODIS’s spatial resolution of approximately 463.3 m. The
aggregated Landsat images were resampled to the exact spatial resolution of
MODIS by using once more a bilinear interpolation.

2.2.2 Validation

The Landsat images were used in three different ways to validate the gap filled
MODIS snow cover product. The validation included a wvisual assessment of cell
value differences, the comparison of NDSI distributions and the calculation of a
confusion matriz of classified NDSI values.

For the wvisual assessment, the difference in NDSI was calculated for each grid
cell and then displayed in a map. This allowed a first general assessment of the
accuracy, and an assessment of patterns with positive or negative deviations.
Such patterns could then be compared to a topographic map of the validation
area to assess a potential interrelation with altitude or terrain.

For the NDSI distributions, the distributions of occurring NDSI values in MODIS
and Landsat were compared using histograms and density plots. For the density
plots, a gaussian kernel was used. The gaussian kernel was preferred over other
kernels, because it depicted the distribution better than other alternatives.

Furthermore, a confusion matrixz was computed after the cell NDSI values had
been assigned to six different NDsSI classes. The classes start with an NDST of
0 followed by 0.2 intervals, which were closed on the right. This division was
chosen to obtain a reasonable compromise between the resulting accuracies and
the number of classes. The class 0 was defined as a single NDSI value, because
it contains all grid cells, where no snow signal was detected. The class 0, thus,
allows to assess the ability of MODIS to detect snow in conditions with sparse
snow cover, for which MODIS tends to have difficulties (Hall and Riggs, 2007).
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2.3 Snow Cover Analysis with MOD10A1

2.3.1 MODIS processing

Images of the daily MODIS snow cover product from 2001 to 2018 were processed
in several steps to obtain information on snow and cloud cover in the Pamirs.

Theoretically, MODIS images would have been available since February 2000.
Nonetheless, only images beginning from 2001 were used, since images before
2001 contained a large amount of gaps.

The decision to use daily images (1.5 million grid cells) over 18 years made it
necessary to derive specific processing algorithms, which addressed computation
time and memory limits. Therefore, most processing was executed based on a
combination of custom functions with apply functions. This architecture made
it possible to perform cell wise calculations with single function calls, and thus
drastically reduced computation time. Memory limitations were addressed by
splitting up the study area in multiple small parts.

In the following paragraphs, the successive processing of the downloaded
MODIS tiles up to the calculation of the fractional snow cover (FSC), snow cover
duration (SCD), cloud cover extent (CCE) and cloud cover duration (CCD) is
described. Figure 2.1 outlines the performed MODIS processing procedure.

- Acquisition
- Mosaicing & cut

[ NDSI (MOD10A1) ]

- 1st quality control
- Masking

- 2nd quality control
4

[ NDsI (masked) ]

- NDSI reclassification
- Gap filling

Y

[ NDSI (rcl. & gap filled) ]

|
! ! ! !

© @

Figure 2.1: Processing of the downloaded MODIS satellite tiles. The figure outlines the different
steps involved in the data processing up to the computation of the variables FSC, SCD, CCE
and CCD.
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Acquisition. The MOD10A1 snow cover product is freely available on the
NSIDC homepage. The data is distributed in downloadable tiles of daily temporal
resolution. The tiles come with a spatial resolution of approximately 463 m in
the sinusoidal projection.

Both, the spatial resolution and the projection, weren’t changed, since the
highest available spatial resolution was desired and a reprojection would have
introduced resampling errors (Lunetta et al., 1991; Slater, 1985). Ramifications
of working with the sinusoidal projection were a complicated data processing and
the need to later reproject results to geographical coordinates for visualization
purposes. To exclude edge effects caused by this reprojection, the displayed extent
for regional results (Sect. 2.3.2) was slightly trimmed by 0.05°.

Mosaicing & cut. Upon the data acquisition, a mosaicing and subsequent
cut was applied. The study area required the combination of three MODIS tiles
(h23v04, h23v05, h24v05). For each day the three tiles were first combined, and
then trimmed to the study area’s geographic extent (70.4-75.7° E, 36.3-39.9° N).

1st quality control, masking & 2nd quality control. A first quality control
was conducted, during which missing images and images with differing resolution
or extent were extracted. When the respective images could not be obtained in a
complete form from the NSIDC homepage, they were noted as gaps (Tab. 2.2).

Next, values outside the study area had to be masked. While raster images
exist per definition only as rectangular grids, the shape of the study area in the
sinusoidal projection required a non-rectangular shape. This led to the problem
that the previously defined rectangular raster included grid cells outside the
actual study area. Therefore, cells outside the study area were set to NA by
applying a mask. From there on onward, grid cells inside the study area were
selected by cell numbers derived from the 10th of August 2001 — a day in a period
of days characterized by low cloud cover, with the correct total amount of NA for
the outer grid cells and no visible NA cells upon manual inspection.

Following the masking step, a second quality control was conducted. During
this second quality control, days that were characterized by an abnormal amount
of NA cells (inside the study area) were removed and noted as gaps (Tab. 2.2).

NDSI reclassification & gap filling. To later obtain a data set which only
contained NDSI values between 0 and 1, a reclassification was conducted: cell
values for “missing data”, “no decision”, “night”, “cloud”, “detector saturated” and
“fill” were set to NA, and cell values for “inland water” and “ocean” were set to 0

(no snow).
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Table 2.2: MODIS gaps for the study area. The table notes all days, for which the tiles were

either completely missing or manually removed due to incompleteness or an abnormal amount
of NA cells.

Year Gaps >
2001 12-13 Feb*, 15-30 Jun*, 01-03 Jul*, 09 Aug*, 07 Oct?, 06 Nov* 24
2002  20-28 Mar*, 15 Apr* 10
2003 01 Feb*, 22 Mart, 01 Aprf, 17-24 Dec* 11
2004 19 Feb* 1
2005 22 Sepf, 27 Novt 2
2006 21 Jun*, 23 Aug* 2
2008 17 Nov', 20-23 Dec* 5
2009 09 Sep* 1
2010 06 Marf, 26 Jun* 2
2014 26 Oct* 1
2016 19-28 Feb* 10
2017 24 Apr* 1

*  no tiles of the study area were available

T only part of the study area’s tiles were available (differing extent)
¥ images that had a very high number of cells with NA values

Next, a simple temporal gap filling procedure was applied to obtain consistent
and (ideally) cloud cover independent results. First, missing days were added
as NA. Subsequently, grid cells with time series of more than 60 % NA were
excluded from the analysis, because these gaps were considered as not suitable
for the chosen gap filling approach. The remaining grid cells with gaps below 60
% were filled by using a simple linear interpolation of the NDSI. Gaps in the very
beginning or end of a time series without preceding or subsequent values, were
filled by using the closest value that was not NA. Afterwards, leap days in the
time series were removed to obtain a consistent time series suited for later trend
analyses.

This simple temporal gap filling approach was chosen, since a more elaborate
approach would have been beyond the scope of this thesis. Other gap filling
techniques besides temporal gap filling include the use of additional sensors,
snowline estimation and spatial gap filling using neighboring grid cells (Gafurov
and Bardossy, 2009). The applied approach ensured a complete removal of clouds
with reasonable results (Sect. 3.2). Furthermore, some gap filling techniques, like
a spatial gap filling that uses neighboring grid cells, could have been problematic
considering the study area’s complex terrain and the GCOS recommendations for
the spatial resolution (WMO, 2011).

FSC, SCD, CCE, CCD computation. The CCE and CCD were calculated
from the masked data set by using the cloud flagged cells of the MOD10A1 snow
cover product. The calculations of the FSC and SCD were based on the gap filled
NDsI data set (Fig. 2.1).
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The CCD was computed by first counting the number of days in which a cell
was marked as cloud, and then dividing this number by the number of total days
of the time period of interest. The CCE was computed by counting the number
of cells marked as cloud and then dividing this number by the number of total
cells within the study area.

Before the calculation of the FSC and SCD, the NDSI values from the MODIS
snow cover product had to be adjusted by a scale factor of 0.01 first, since
the original values came as integers only, with a valid range from 0 to 100.
The FSC was then calculated by using equation (2.2), which is based on an
empirical regression relationship between MODIS-Terra NDSI observations and
FSC calculations from Landsat (Salomonson and Appel, 2004, 2006):

(—0.01 + 1.45 x NDSI) x 100 (2.2)

Subsequently, FSC values smaller than 0 % and greater than 100 % were set to 0
% and 100 % respectively.

The SCD was calculated by counting the number of days, in which the NDSI
exceeded a threshold of 0.2, which corresponds to a FSC of 28 % according to
equation (2.2). An annual SCD of 100, thus, represents a time series, during
which 100 days out of all 365 days had a FSC (NDsI) greater than 28 % (0.2).
The NDsI threshold of 0.2 was chosen based on considerations of local terrain and
snow heterogeneity in the study area. While it has been common practice for
some time to use a NDSI threshold of 0.4 for studies on snow covered area, recent
literature recommends a threshold between 0.1 and 0.4 depending on the study
area and other factors (Riggs et al., 2015). A higher threshold for the SCD can
decrease the error of commission. Low NDSI values can occur even when there
is no snow (Riggs et al., 2015). Therefore, a higher threshold can reduce the
number of days that were falsely classified as snow covered. However, a higher
threshold for the SCD can also increase the error of omission. Thin or sparse
snow cover as well as snow in shaded areas can have lower NDsI values (Riggs
et al., 2015; Sorman et al., 2007). Thus, in complex terrain or conditions with
sparse snow cover, a higher threshold can lead to the omission of days that should
have been classified as snow covered. In this study, a threshold of 0.2 was chosen
as a reasonable compromise in an area with complex terrain and considerable
snow cover heterogeneity.

All calculations were computed annually and seasonally. For the seasonal
analysis, the four meteorologic seasons were used: spring (01 Mar — 31 May, 92
days), summer (01 Jun — 31 Aug, 92 days), fall (01 Sep — 30 Nov, 91 days) and
winter (01 Dec — 28 Feb, 90 days). Since images from 2001 to 2018 were used,
values for winter could only be computed from 2001 to 2017 (with winter 2001
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starting in December 2001).

2.3.2 Overall, regional & cell calculations

Calculations were subdivided in three categories: overall, regional and cell calcu-
lations. The reasoning behind this subdivision was that each category addresses
a different spatio-temporal analysis. Figure 2.2 illustrates all included results of
the snow cover analysis together with their respective category and variable.

Overall. The category overall refers to calculations regarding the entire study
area as a whole. Calculations in this category were intended to assess the
conditions of the entire study area rather than spatial differences within the study
area.

Calculations belonging to this category were the mean seasonal cycle and
trend calculations. For the the mean seasonal cycle the FSC was calculated
by averaging the cell FSC values on each day and subsequently averaging the
respective day over all years. The CCE of the mean seasonal cycle was calculated
as described in the previous section (Sect. 2.3.1) and then averaged over all years.
Trend calculations were performed by conducting a trend analysis (Sect. 2.3.3)
on the daily and mean FSC time series of the entire study area. Thereby, the
daily FSC time series was derived from averaging all cell FSC values on each day,
and for the mean FSC an annual/seasonal mean of the study area’s FSC was
used.

Regional. The category regional refers to cell wise calculations of the entire
study area. These cell wise calculations allowed to examine spatial differences
within the Pamirs. Results of this category could be visualized with maps.

Calculations were mostly analog to calculations in overall. The overall mean
maps were created by simply averaging the whole time series of each grid cell.
Trend calculations were performed in the same way as in overall with the difference,
that the trend analysis was conducted on each individual cell. For trend maps
the slope of the linear trend was displayed for each cell.

Cell. The category cell refers to calculations for individual grid cells that were
analyzed in more detail. Calculations in this category were performed for grid
cells that were situated in regions with noteworthy results or results out of the
ordinary, and were, thus, meaningful to inspect.

Overall, results of more than a few cells have been broadly checked, and four
cells were inspected in more detail. Nonetheless, only some results of the cell
833289, which lay within a region with noteworthy results, are included in the
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results of this thesis. Calculations were performed in the same way as in regional,
but only on the grid cell of interest.

- Mean seasonal cycle
- Trend (daily)
/ - Trend (mean)

\ - Trend (daily)
- Trend (mean)

/ e
chional - Overall mean

- Trend

- Trend

@—) - Mean seasonal cycle
—> Regional ) - Overall mean

Figure 2.2: Overview of all included results of the snow cover analysis with MODIS. Calculations
of the different variables were subdivided in the three categories overall, regional and cell. Each
category addresses a different spatial scale.

2.3.3 Trend analysis

A trend analysis was conducted for time series of the entire study area and for
time series of all grid cells. The analyzed time period from 2001 to 2018 was
examined as a whole; no further temporally subdivided analyses were conducted.

When a seasonal component was present in the time series to be analyzed,
like in a daily FSC time series for instance, the time series was decomposed by
using an additive model consisting of a seasonal, trend and remainder component.
In cases where there was no seasonal component, like for the annual SCD for
instance, the time series was simply decomposed by using an additive model
consisting of a trend and remainder component.

Moving average. For daily time series, a simple moving average trend was
computed by using a symmetric averaging window with a length equal to the
frequency of the input time series. Hence, for a time series with daily observations
within a whole year (frequency = 365), an averaging window of 365 has been used.

23



2 Methods

The first value would, thus, be calculated on position 183 as the mean of 1 to 365.
This approach was chosen, because then the so calculated moving average was
unaffected by seasonality and was a reasonable compromise between sensitivity
and noise. Next, the trend component was subtracted from the input time series.
Subsequently, the seasonal component was calculated as the average of each
time unit over the whole time series. Afterwards, the remainder component was
computed as the difference between the input time series and the sum of the
seasonal and trend component.

Linear model. A simple linear least squares model was calculated, to obtain
an indication of the overall trend (Wilks, 2011). For this, the respective time
series was decomposed as in the calculation of the moving average. After the
calculation of the seasonal component, a linear model was computed using the
original time series subtracted by the seasonal component. Next, the remainder
component was computed in the same way as in the moving average.

ANOVA. The analysis of variance (ANOVA) method was used to assess the
significance of the linear trend with respect to the null hypothesis of no trend
(Wilks, 2011). No ANOVA was conducted when significant autocorrelation was
present. Autocorrelation was assessed with the functions specified in Duchon and
Hale (2012).

Mann-Kendall trend test. In addition to the linear model combined with the
ANOVA test, the Mann-Kendall trend test (MK) was performed to in general test
for a non-monotonic trend in the time series (Wilks, 2011). In case of significant
autocorrelation, the modified Mann-Kendall trend test (mMK) derived by Hamed
and Rao (1998) was used.

2.4 Software

The data acquisition of MODIS, data processing, statistical analyses and validation
were all performed using the R software environment. Table 2.3 lists all packages,
which have been used in the analysis together with their respective field of
application. Package dependencies and further packages, which are included
in the base installation, are not included in table 2.3. In addition, QGIS was
used for the acquisition of data from the OpenStreetMap project. GIMP was
used to overlay trend plots with a pattern as indication of significant grid cells.
Furthermore, Blender was used to create a time lapse video, which illustrates the
course of the daily snow cover in the study area for the analyzed time period.
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Table 2.3: R packages that were used for this thesis in addition to the packages from the base
installation. Package dependencies are not included in the table.

Field of Application

Packages

Data acquisition
Processing
Trend analysis
Visualization

MODIS

ff, plyr, raster, rgdal, RStoolbox, sp

Kendall, modifiedmk, zoo

dichromat, extrafont, ggnewscale, ggplot2, ggpolypath, ggsn, grid,
gridExtra, rasterVis, rnaturalearth, shadowtext
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3.1 Cloud Cover

Cloud cover was generally very high in the Pamirs. On average a grid cell was
covered with clouds 49 % of the time. The cloud cover duration (CCD) pattern
clearly reflects altitude differences, whereby areas with a high altitude typically
had high CCD values. Areas, which had comparatively low CCD values, are
mostly valleys in the southwest, east and northeast.

Figure 3.1 illustrates the overall mean CCD in percent for each grid cell of
the study area. Cell values ranged from 29 to 88 % CCD. The mean CCD of grid
cells within the study area was 49 %. Large parts of the study area had high
CCD values (Fig. 3.1). However, there were also areas with comparatively low
CCD between 30 and 40 %, mostly in the east and southwest of the study area
(Fig. 3.1). When comparing figure 3.1 with the topographic map in figure 1.2 it
is apparent, that the observed CCD pattern strongly reflects altitude differences.
Areas with high CCD primarily represent regions with major mountain ridges.
Differences between the Eastern and Western Pamirs were not apparent.

3.2 Validation

3.2.1 Area and date selection

Validation area. The red inset (73.35-74.85° E, 37.10-38.00° N) in figure 3.2
marks the validation area. This particular region was chosen, because it was
characterized by strong snow cover reductions in the snow cover analysis (Sect.
3.3). Additionally, figure 3.2 illustrates the extent of the original Landsat tile
(orange inlet) and the processed extent after the first cut (blue inlet).
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Figure 3.1: Mean cloud cover duration (CCD) in the study area from 2001 to 2018. The
colors indicate the percentage of days that have been covered by clouds during 2001 to 2018.
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Figure 3.2: Map of the study area with indications for the processed Landsat raster. The
orange inlet represents the extent of the original Landsat 5 tile. The blue inlet represents the
area after the first cut (Sect. 2.2). The red inlet represents the final validation area.
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Validation dates. Two Landsat images were selected, one from the 25th of
April 2008 and one from the 11th of March 2009.

The reason to choose images in spring 2008 and 2009 was a difference in
snow conditions and other considerations (Sect. 2.2). The snow season 2008
was characterized by comparatively little snow, whereas the snow season 2009
had comparatively much (Sect. 3.3). The exact dates were chosen based on
the availability of Landsat 5 images and cloud coverage conditions. Figure 3.3
illustrates the FSC and CCE conditions in spring 2008 and 2009, together with
indications for the available Landsat 5 images. MODIS images with the NDST of
the entire study area on both days can be found in the appendix (Fig. A.1, A.2).
The 25th of April 2008 and 11th of March were reasonable compromises between
different snow conditions at the same season of consecutive years. Furthermore,
cloud cover conditions were still acceptable on both days (Fig. 3.3).
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Figure 3.3: The selection of the 25th of April 2008 and the 11th of March 2009 as validation
dates. The black arrows mark the validation dates. Other available Landsat 5 images, which
had not been chosen for the validation, are marked with gray arrows.

3.2.2 Validation on the 25th of April 2008

Visual assessment. MODIS and Landsat showed reasonable agreement in re-
gard of the general NDSI pattern on the 25th of April 2008. However, there were
also considerable differences visible between MODIS and Landsat. Results indicate
that MODIS overestimated the NDSI in higher altitudes, and underestimated the
NDsI in lower altitudes.

Figure 3.4 contrasts the NDSI results of MODIS with the ones from Landsat
on the 25th of April 2008. The gap filled MODIS image (Fig. 3.4a) is illustrated
together with the high resolution Landsat image (Fig. 3.4b), the aggregated and
resampled Landsat image (Fig. 3.4c) and a figure, which indicates the difference
in NDSI between MODIS and the aggregated and resampled Landsat image (Fig.
3.4d).

29



3 Results

In the gap filled MODIS product, high NDSI were primarily detected on large
mountain ridges, while lower NDSI values were detected in more even terrain
(Fig. 3.4a). Furthermore, only few NDSI values of medium magnitude were
detected, as indicated by the pronounced contrast in figure 3.4a. Despite MODIS’s
comparatively low resolution there is still a larger lake identifiable in the south of
the validation area. However, in contrast to the MODIS image, the high resolution
Landsat image contains far more detail (Fig. 3.4b). Mountain ridges are easily
identifiable and many lakes and rivers can be identified as well. Since the Landsat
image was not gap filled, many NA cells were still present, especially around
mountain ridges within the validation area. In the aggregated and resampled
Landsat image, a considerable amount of detail was lost (Fig. 3.4c). The notably
larger NA areas in figure 3.4c illustrate the aggregation process, during which
new grid cells were completely set to NA if one inner cell contained a NA value
(Fig. 3.4c).

Figure 3.4d shows the difference between MODIS and the aggregated and
resampled Landsat image. While 41 % of all valid grid cells only differed by less
than £0.05, 44 % of the cells were underestimated (positive classes) and 15 % of
the cells were overestimated (negative classes). Therefore, MODIS considerably
underestimated and slightly overestimated the snow conditions on the 25th of
April 2008. Moreover, Figure 3.4d indicates that MODIS underestimated the NDSI
in lower altitudes and overestimated the NDSI in higher altitudes.

NDSI distributions. The analysis of the NDSI distributions of MODIS and
Landsat demonstrates that MODIS failed to detect many low NDSI values. In
addition, results indicate that MODIS also slightly overestimated high NDSTI values.

Figure 3.5 illustrates the distribution of NDSI values for MODIS and Landsat
on the 25th April 2008. In MODIS, the vast majority of grid cells had NDSI values
close to 0. Also in Landsat the majority of grid cells had NDsI values close to 0.
However, the number of grid cells in Landsat with a NDSI of approximately 0 was
only between a forth and a third of the number in MODIS. In contrast to MODIS,
Landsat detected far more cells with NDSI values of low and medium magnitude.
In high NDSI ranges, MODIS slightly overestimated NDSI values. However, the

sample size of grid cells with high NDSI values was relatively small on the 25th of
April 2008.
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Figure 3.4: Visual comparison of MODIS and Landsat on the 25th of April 2008. The NDsI of
MODIS (a) is illustrated along with the NDSI of the high resolution Landsat image (b) and the
aggregated & resampled Landsat image (c). The difference between MODIS and the aggregated
& resampled Landsat image is illustrated in (d).
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Figure 3.5: NDSI distributions of MODIS and the aggregated & resampled Landsat image on
the 25th of April 2008.

Confusion matrix. The confusion matrix confirms that MODIS considerably
underestimated low NDSI values. NDSI values up to class 2 (NDSI = 0.2 — 0.4)
were underestimated. The slight overestimation of high NDSI values, as indicated
by the NDsI distributions (Fig. 3.5), is not apparent in the confusion matrix. The
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overall accuracy of the MODIS image on the 25th of April 2008 with the chosen
classification scheme of six classes was relatively low with only 25 %.

Table 3.1 displays the confusion matrix for the validation of MODIS with
Landsat. The confusion matrix was created by introducing a classification scheme
with six distinct classes and by using the Landsat image as the reference data
set. The Landsat image is, thus, regarded as the actual truth. Results of the
confusion matrix vary depending on the classification scheme. The here applied
scheme with six classes, including a class 0, which solely contains NDSI of 0, led to
an overall accuracy of 25 %. In other words, only 25 % of the cells were correctly
classified.

The confusion matrix confirms that low NDSI values were underestimated by
MODIS. This is indicated by the results of the confusion matrix for class 0 (NDSI
= 0) and class 1 (NDSI = 0 — 0.2). MODIS classified 26218 grid cells as class 0,
but only 2827 of these grid cells were actually class 0 (with 2898 grid cells in
total whose NDSI = 0). Most of the grid cells that MODIS classified as 0 were
actually class 1, and a substantial amount of cells were even class 2 or 3. This is
reflected in the low user accuracy of 11 % of class 0: only 11 % of the cells that
MODIS classified as 0 were actually class 0 (error of commission = 89 %). At the
same time the high producer accuracy of 98 % of class 0 — meaning that 98 %
of all cells that truly were class 0 were correctly classified as 0 — indicates, that
there was no substantial concurrent overestimation of class 0 (error of omission
=2 %). Thus, MODIS considerably overestimated class 0 (NDSI = 0), because it
underestimated or rather failed to detect low NDSI values of mainly class 1 and 2.
Moreover, MODIS considerably underestimated the NDST up to class 2, which can
be seen by comparing the different rows of the classes 1 and 2 columns from the
Landsat reference (Tab. 3.1).

The confusion matrix does not confirm the slight overestimation of high NDSI
values, which was observed in the NDSI distributions (Fig. 3.5). Conversely, a
slight underestimation is visible: MODIS falsely classified most of the 58 class 5
grid cells as class 4, while only overestimating 32 grid cells with lower NDSI as class
5. However, the small sample size in combination with the chosen classification
scheme does not allow for reliable conclusions in this regard.
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Table 3.1: Confusion Matrix for the 25th of April 2008. The confusion matrix was created by
introducing a classification scheme of six classes: class 0 (NDSI = 0), class 1 (NDSI = 0 — 0.2),
class 2 (NDSI = 0.2 — 0.4), class 3 (NDSI = 0.4 — 0.6), class 4 (NDSI = 0.6 — 0.8) and class 5
(NDsI = 0.8 — 1). Individual values within the matrix indicate the number of grid cells with the
respective class combination of MODIS and Landsat. Grid cells, which were correctly classified,
were assigned to the same class by MODIS and Landsat (e.g. row 0 and column 0).

Landsat (reference)

user acc.
0 1 2 3 4 5 > (%]
0 2827 17036 5086 1269 0 0 26218 11
1 43 2101 1790 539 8 0 4481 47
MODIS 2 25 759 2106 1187 24 0 4101 51
3 3 150 983 2142 200 2 3480 62
4 0 23 205 2356 1199 56 3839 31
5 0 0 0 31 1 0 32 0
> 2898 20069 10170 7524 1432 58 42151
producer
ace. (%) 98 10 21 28 84 0 25

3.2.3 Validation on the 11th of March 2009

Visual assessment. On the 11th of March 2009 (high snow cover), the agree-
ment between MODIS and Landsat was much better than on the 25th of April
2008 (sparse snow cover). The majority of grid cells differed by less than 40.05.
Differences between MODIS and Landsat occurred mostly in areas with heteroge-
neous snow cover, where they could still amount up to +0.6. Furthermore, on
the 11th of March 2009 areas with differing grid cells were far more fragmented
than on the 25th of April 2008.

In the same way like for the 25th of April 2008, the MODIS image on the 11th
of March 2009 is contrasted with the respective Landsat images in figure 3.6. The
11th of March 2009 was a day with comparatively high snow cover. In contrast
to the 25th of April 2008, most grid cells had high NDsI values. In both, MODIS
and Landsat, only the northeast of the validation area had low NDsI values (Fig.
3.6). Like before, detail in the high resolution Landsat image is noticeably higher
than in the other images, and many NA cells are present in the Landsat images
due to cloud cover.

On the 11th of March 2009, 60 % of all grid cells of the validation area
differed by less than 4+0.05. The agreement between MODIS and Landsat is
much better than on the 25th of April 2008. Furthermore, 27 % of all grid cells
were underestimated (positive classes) and 12 % of the cells were overestimated
(negative classes).

In contrast to the 25th of April 2008, changes between MODIS and Landsat
were more fragmented on the 11th of March 2009 (Fig. 3.6d). While on the
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25th of April 2008 larger coherent areas with differences are recognizable (Fig.
3.4d), such areas are comparatively small on the 11th of March 2009 (Fig. 3.6d).
Furthermore, differences between MODIS and Landsat on the 11th of March 2009
occurred mainly in areas with spatially very heterogeneous snow cover (Fig. 3.6).
Nonetheless, grid cell differences could still amount up to £0.6 (Fig. 3.6d).
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Figure 3.6: Visual comparison of MODIS and Landsat on the 11th of March 2009. The NDsI of
MODIS (a) is illustrated along with the NDsI of the high resolution Landsat image (b) and the
aggregated & resampled Landsat image (c). The difference between MODIS and the aggregated
& resampled Landsat image is illustrated in (d).

NDSI distributions. The results of the NDSI distributions on the 11th of
March 2009 confirm that MODIS underestimated low NDSI values, and slightly
overestimated high NDSI values.

Figure 3.7 illustrates the distribution of NDSI values in the validation area
for the 11th of March 2009. Similar to the 25th of April 2008, figure 3.7 also
indicates that the applied MODIS data set underestimated lower NDSI values, and
overestimated high NDST values. In particular the very low NDSI values were often
not detected in MODIS and thus 0. The number of grid cells with NDSI values of
medium magnitude were fairly similar in MODIS and Landsat. In the higher NDsI
range, MODIS tended to overestimate the NDSI values.

Confusion matrix. The confusion matrix confirms the much better agreement
of MODIS and Landsat on the 11th of March 2009 compared to the 25th of April
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the 11th of March 2009.

2008. The better agreement is reflected in the higher overall accuracy of 65 %.
The confusion matrix also confirms the underestimation of low NDSI values and
overestimation of high NDSI values in MODIS. In this regard, the underestimation
is more apparent than the overestimation.

Table 3.2 displays the confusion matrix for the 11th of March 2009. To create
the confusion matrix, the same classification scheme was applied as for the 25th
of April 2008. On the 11th of March 2009, MODIS agreed fairly well with the
Landsat reference data set. The agreement between MODIS and Landsat is clearly
better than on the 25th of April 2008, as reflected by the higher overall accuracy
of 65 % (Tab. 3.2).

Similar to 2008, the underestimation of low NDSI values in MODIS is confirmed.
The results from class 0 and class 1 both reflect the results of the 25th of April 2008:
MODIS overestimated class 0 to the detriment of class 1. Class 0 is characterized
by a very low user accuracy of 4 % due to MODIS falsely classifying many class 1
cells as class 0. At the same time the producer accuracy of class 0 is very high
(99 %), indicating that there was no substantial overestimation of class 0. On
the other hand, the producer accuracy of class 1 is fairly low (24 %) because
of the many misclassifications as class 0. Contrarily to the 25th of April 2008,
however, the underestimation of low NDSI values is not as apparent as in 2008,
since the sample size of grid cells with low NDSI values was smaller. Furthermore,
no substantial underestimation of NDSI values in class 2 is indicated on the 11th
of March 2009.

The slight overestimation of high NDST values is, in contrast to 2008, confirmed
on the 11th of March 2009. A substantial amount of grid cells, which truly were
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class 4, were falsely classified as class 5 in MODIS (Tab. 3.2). In addition, only
comparatively few grid cells of class 5 were falsely classified as class 4 or lower
(Tab. 3.2). As the net result, class 5 was clearly overestimated. Hence, this
illustrates that MODIS overestimated high NDSI values.

Table 3.2: Confusion Matrix for the 11th of March 2009. The confusion matrix was created by
introducing a classification scheme of six classes: class 0 (NDSI = 0), class 1 (NDSI = 0 — 0.2),
class 2 (NDSI = 0.2 — 0.4), class 3 (NDSI = 0.4 — 0.6), class 4 (NDSI = 0.6 — 0.8) and class 5
(NDsI = 0.8 — 1). Individual values within the matrix indicate the number of grid cells with the
respective class combination of MODIS and Landsat. Grid cells, which were correctly classified,
were assigned to the same class by MODIS and Landsat (e.g. row 0 and column 0).

Landsat (reference)

user acc.
0 1 2 3 4 5 > (%]
0 146 2958 179 4 0 0 3287 4
1 1 1236 870 114 3 0 2224 56
MODIS 2 0 885 3170 1729 135 1 5920 54
3 0 63 918 4712 2872 4 8569 55
4 0 2 51 965 15003 727 16748 90
5 0 0 0 1 4587 2323 6911 34
> 147 5144 5188 7525 22600 3055 43659
producer
ace. %) 99 24 61 63 66 76 61

3.3 Snow Cover Analysis

The results of the snow cover analysis are structured as follows: the results of the
snow cover extent (SCE) analysis are presented first, followed by the results of
the snow cover duration (SCD) analysis. In each case, the results were subdivided
in overall, regional and cell results, analog to the description in section 2.3.2.
Overall represents results regarding the entire study area as a whole. Regional
refers to cell wise results of the whole study area that are illustrated with maps.
The category cell refers to results of a singular cell that was analyzed in more
detail. Within a category, typically an overview of the mean conditions is followed
by the results of a trend analysis.

While the snow cover duration (SCD) is directly specified as SCD in days per
time period (e.g. days per year: d/y), the results of the snow cover extent (SCE)
exclusively use the fractional snow cover (FSC) — the fraction of a certain area
that is covered by snow in percent — as a measure for the SCE.
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3.3.1 Snow cover extent (SCE)

a. Overall results

Mean seasonal cycle. The study area is characterized by a pronounced
seasonal cycle in FSC and CCE. The snow season usually started in Septem-
ber/October and major thaw of snow began in March/April.

Figure 3.8 shows the daily FSC and CCE of the entire study area averaged
over the whole period from 2001 to 2018. Thus, figure 3.8 illustrates the mean
seasonal cycle of the FSC and CCE for the entire study area. It can be seen
that within the Pamirs the snow covered area followed a pronounced seasonal
cycle (Fig. 3.8). The mean snow covered area varied from up to 80 % (12th Feb)
coverage in winter to only 8 % (23rd Aug) in summer. During the year, the mean
FSC varied from 75 % in winter over 58 % in spring and 15 % in summer to 30 %
in fall. The overall mean FSC of the study area during the period from 2001 to
2018 was 45 %. The substantial increase in FSC in September/October indicates
the beginning of the snow season (Fig. 3.8). Major thaw of snow typically started
in March/April, indicated by the noticeably decrease of FSC during these months
(Fig: 3.8).

The CCE followed a similar seasonal cycle like the FSC: the maximum CCE
lay within February with nearly 84 % (5th Feb) cloud coverage on average, while
the minimum CCE lay within September with about 9 % (10th Sep). During the
year, the mean CCE varied from 69 % in winter over 56 % in spring and 32 % in
summer to 38 % in fall. The overall mean CCE is 49 %. Compared to the FSC,
the annual course of the CCE was not as pronounced (Fig. 3.8). This is reflected
in the lower standard deviation of the CCE of 17 %, compared to 26 % for the

FSC.
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Figure 3.8: Mean seasonal cycle of the FSC and CCE for the study area during 2001 to 2018.
The blue line and the red bars indicate the mean daily FSC and CCE.
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Trend (daily). The trend analysis of the daily FSC time series from 2001 to
2018 indicates a slight decreasing trend of —0.17 % FSC per year across the
Pamirs.

Figure 3.9 illustrates the results of the trend analysis for the daily FSC of the
entire study area. The black graph at the top represents the FSC time series.
The blue graphs in the middle represent the seasonal and trend components. The
red graph at the bottom indicates the remainder of the decomposition with the
linear trend component. The linear model indicates a slight negative trend of
—0.17 % per year. Over all 18 years, this trend would result in a total decrease
of —=3.1 % FSC. The moving average (weak blue line) reveals time periods with a
high /low snow coverage. Snow seasons with comparatively high snow coverage
were 2004/05, 2009/10 and 2011/12, while the snow seasons 2007/08, 2010/11 and
2017/18 had comparably little snow (Fig. 3.9). The only slowly alternating curve
of the remainder component indicates that there is still significant autocorrelation
present (Fig. 3.9). This is confirmed in figure 3.10a, which illustrates the
autocorrelation of the daily FSC without the seasonal component. Due to the
present autocorrelation, no reliable statement on the trend significance of the
daily trend analysis can be made.
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Figure 3.9: Trend analysis of the daily FSC from 2001 to 2018 for the entire study area.
The black graph at the top illustrates the original FSC time series. This time series was
then decomposed into a seasonal component and a trend component (both blue) as well as a
remainder component (red). Both, the decomposition with a linear trend (strong blue line) and
the decomposition with a moving average (weak blue line), are indicated. The equation next to
the trend graphs belongs to the linear trend and refers to annual time steps. The displayed
remainder component represents the residuals of the linear model.
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Figure 3.10: Autocorrelation of the daily (a) and mean annual (b) FSC time series from 2001
to 2018. The black bars indicate the autocorrelation of the for the respective lag. The dashed
blue line indicate the 95 % confidence interval.

Trend (mean). The slight negative trend in annual FSC for the entire study
area was not significant. Negative trends were found in all seasons, with the
strongest decrease in winter. The trends for spring, summer and fall were all not
significant. The trend in winter, however, was weakly significant.

Figure 3.11 illustrates the trend of the mean annual FSC from 2001 to 2018
for the entire study area. According to the linear trend, the mean annual FSC
has decreased by about 3 %. Contrary to the trend analysis of the daily FSC
time series, the change between individual years is more apparent. Noteworthy is
the year 2007, which had a considerable lower FSC than other years.

In contrast to the trend analysis of the daily FSC, the mean FSC showed
no significant autocorrelation (Fig. 3.10b). Therefore, a meaningful assessment
of the trend significance was possible. Both, ANOVA (p-value: 0.29) and MK
(p-value: 0.44), indicate that the annual trend is not significant.

Figure 3.12 illustrates the seasonal trend analysis. Trends were negative
throughout all seasons (Fig. 3.12). The trends in spring, summer and fall were
all only minor. In winter, however, a noteworthy trend of —0.67 % per year was
detected. This trend would lead to a total decrease of about 11 % FSC from
winter 2001/02 to 2017/18. Trends for spring (ANOVA: 0.91, MK: 0.88), summer
(ANOVA: 0.84, MK: 0.60) and fall (ANOVA: 0.59, MK: 0.70) were all not significant.
The negative trend in winter was weakly significant (ANOVA: 0.059, MK: 0.091).
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Figure 3.11: Trend analysis of the mean annual FSC for the entire study area. The black
dots mark the mean FSC of the respective years. The blue line represents the linear trend. The
equation of the linear model is indicated in the upper right corner. The red bars represent the
residuals of the linear model.
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Figure 3.12: Trend analysis of the mean seasonal FSC for the entire study area. The black
dots mark the mean FSC of the respective seasons. The blue line represents the linear trend.
The equation of the linear model is indicated in the upper right corner. The red bars represent
the residuals of the linear model.
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b. Regional results

Overall mean. The mean FSC patterns in the Pamirs clearly reflect altitude
differences. Furthermore, patterns indicate a difference between higher snow
coverage in the Western Pamirs and lower snow coverage in the Eastern Pamirs.

Figure 3.13 displays the overall mean FSC for each grid cell in the study area.
The effect of a location’s altitude is clearly visible. By comparing figure 3.13
with the topographic map (Fig. 1.2), it is apparent that areas with high FSC
values generally represent mountain ridges — this is particularly true for summer
(Fig. A.3b). Moreover, large valleys can be identified without much effort (Fig.
3.13). In addition, the figure 3.13 indicates a general decrease in mean FSC
from west to east, reflecting the precipitation difference between the Western and
Eastern Pamirs. The eastern part of Tajikistan and most of the areas within
China, especially, had a noticeable lower mean FSC then most of the rest of the
study area. Also noteworthy to mention is that Lake Karakul including its island
can be discerned in the northeast of Tajikistan. The lake area had a noticeably
higher mean FSC then the surrounding areas. Apart from Lake Karakul, other
lakes are difficult to identify.

In the appendix a figure with the seasonal overall mean FSC is included (Fig.
A.3). When comparing the different seasons, it is clearly visible that winter
had the highest amount of snow cover followed by spring, fall and then summer
(Fig. A.3). In summer and fall differences in snow cover were mainly related
to differences in altitudes, since most of the snow is located on the mountain
ridges (Fig. A.3b). In winter and spring, however, the west-east difference is
clearly visible, with higher snow coverage in the west (Fig. A.3). Also interesting
is the development of the FSC on Lake Karakul throughout the seasons. In
spring, summer and winter, Lake Karakul had a higher mean FSC than its
surroundings (Fig. A.3). In fall, however, Lake Karakul had a lower mean FSC
than the surrounding areas. In spring, the slightly lower mean FSC in the western
part of the lake indicates that Lake Karakul typically thawed from west to east.
Furthermore, the mean FSC in winter indicates that the lake typically froze from
the east to west.

Trend. The regional trend results indicate a significant negative trend in FSC
in the Eastern Pamirs, primarily in southeast Tajikistan. Although the majority
of analyzed grid cells in the study area had trends close to 0, more than 80 %
of the cells had a negative trend and about 10 % of the cells had a substantial
negative trend of more than —0.5 % per year. Only 0.1 % of the grid cells had
a substantial positive trend of more than +0.5 % per year. The general trend
pattern was similar throughout the different seasons except in summer, where
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Figure 3.13: Map of the overall mean FSC in the study area from 2001 to 2018. Areas that
were left out of the analysis are colored red. State borders and a selection of cities are indicated
in blue. The yellow crosses mark individual grid cells that were further investigated.

no substantial trend occurred in the vast majority of the study area. In spring
and fall, substantial positive and negative trends were visible, but the majority
of the trends was not significant. In winter strong negative trends, especially in
the Eastern Pamirs, were visible.

Figure 3.14 displays the results of the regional FSC trend analysis for the
whole time period from 2001 to 2018. In the Eastern Pamirs, a large area in the
southeast of Tajikistan as well as some areas in China had significant negative
trends in the mean FSC (Fig. 3.14). Moreover, significant negative trends were
also detected in the Bartang and Shakhdara valleys in the Western Pamirs and
in the Alai mountain range. However, the majority of the areas with a significant
negative trend lay within southeast Tajikistan and had a change rate of —1.5 to
—1 % mean FSC per year (Fig. 3.14). Although 90 % of the grid cells had only
trends of less than £0.5 % per year (Tab. 3.3), still 81 % of all analyzed cells had
a negative trend. Furthermore, while only 0.1 % of the cells had a positive trend
of more than +0.5 % per year, 10 % of the cells had a negative trend of more
than —0.5 % per year, and 1.5 % of the cells had an considerable negative trend
of more than —1 % per year (Tab. 3.3). Also noteworthy is the region around
74.98° E and 38.76° N in the Eastern Pamirs, north of Tashkurgan in China. In
this region, significant positive trends were detected (Fig. 3.14).
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Figure 3.14: Map of the FSC trend from 2001 to 2018 in the study area. Areas that were
left out of the analysis are colored gray. The annual change rate is indicated by the slope of
the linear trend in colors from blue (positive) to red (negative). White areas were regarded as
having no substantial trend. Areas with a significant trend of p < 0.05 (based on ANOVA), were
marked with a black dot pattern. State borders and a selection of cities are indicated in blue.
The individual cell 833289, which was further inspected, is marked with a black cross.

FSC trends for the study area varied depending on the season. In winter,
the strongest trends occurred and trends were almost exclusively negative. In
spring and fall, still considerable trends were observed and both positive and
negative trends occurred. In summer, the vast majority of the study area had no
substantial trend. In all seasons, except for spring, the majority of grid cells had
a negative trend. Significant trends were almost exclusively negative. However,
only in winter large areas had a significant trend. In general, regions with negative
trends showed more or less a negative trend throughout all seasons except in
summer.

In spring, both regions with negative and positive trends are visible (Fig.
3.15a). The general pattern is similar to the overall trend: the majority of cells
had only small trends below +0.5 %, but there were also considerable negative
trends in the Eastern Pamirs, the Alai valley and along some valleys in the
Western Pamirs (mainly along the Bartang valley around Savnob, the Gunt river
northeast of Khorog and the Shakhdara river southeast of Khorog) (Fig. 3.15a).
In contrast to the overall trend, however, there were only very few regions that
had a significant trend. Trends in southeast Tajikistan were not significant in
spring. An additional slight difference to the overall trend is a more extensive
negative trend in the Alai around Sary-Mogol, with a few areas also showing a
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significant negative trend. Also noteworthy is that in spring considerably more
grid cells had a substantial positive trend than in the overall trend map or in
other seasons (Fig. 3.15a, Tab. 3.3).

In summer, the vast majority of the study area had no substantial FSC trend
(94 %, s. table 3.3). There were no larger areas with significant trends. In the
mid-west of the study area, there were some regions with a substantial negative
trend, which were not significant however. Overall, 60 % of all grid cells still had
a negative trend in summer.

In fall, there was a significant negative trend in southeast Tajikistan, especially
around Alichur and Murghab. In the Alai valley, there was a considerable positive
trend, which was not significant. 66 % of the grid cells had a negative trend,
and 18 % had a considerable negative trend of more than —0.5 % FSC per year.
Similar to spring, the amount of grid cells with a substantial positive trend was
considerably higher than in summer and winter (Tab. 3.3).

In winter, large parts of the study area, especially in the Eastern Pamirs,
showed a significant negative trend. The main areas with a significant negative
trend are the southeast of Tajikistan, the northern Alai, the Eastern Pamirs in
China and the Shakhdara and Bartang river valleys. In southeast Tajikistan,
there are even regions with a negative trend of more than —3 % mean FSC per
year, resulting in a total decrease in mean FSC of more than —51 %.
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Figure 3.15: Map of the seasonal FSC trend in the study area. Areas that were left out of
the analysis are colored gray. The annual change rate is indicated by the slope of the linear
trend in colors from blue (positive) to red (negative). White areas were regarded as having no
substantial trend. Areas with a significant trend of p < 0.05 (based on ANOVA), were marked
with a black dot pattern.
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Table 3.3: Grid cell distributions of the different trend classes for the overall and seasonal
mean FSC trend maps. In the rows, the proportion of grid cells, which belong to the respective
class is listed.

Class [%/y] Overall [%] Spring [%| Summer [%] Fall (%] Winter [%]
+3.0 — +5.5 0.00 0.00 0.00 0.00 0.00
+2.0 — +3.0 0.00 0.01 0.00 0.00 0.01
+1.5 — +2.0 0.01 0.01 0.01 0.01 0.01
+1.0 — +1.5 0.01 0.16 0.02 0.04 0.04
+0.5 — +1.0 0.06 3.35 0.24 2.20 0.71
—0.5 — +0.5 90.02 86.89 98.70 80.23 52.70
—-1.0 —» —-0.5 8.46 7.89 1.02 15.03 18.15
15— -1.0 1.36 1.23 0.02 2.34 12.69
—-2.0— -1.5 0.08 0.38 0.00 0.14 7.98
—-3.0—> =20 0.00 0.08 0.00 0.00 6.43
-5.5— =-3.0 0.00 0.00 0.00 0.00 1.28

c. Cell results

Trend (daily). The daily trend analysis results of grid cell 833289 indicate that
high snow conditions in the snow seasons 2003/04 up to 2006/07 in combination
with low snow conditions from 2012/13 to 2017/18 were the cause for the strong
negative trends in southeast Tajikistan. Furthermore, the closer inspection of
the grid cell revealed, that its daily FSC time series was characterized by rapid
changes resulting in a spiking character of the time series.

In figure 3.16 the trend analysis for the grid cell 833289 is displayed. This
particular grid cell is located in southeast Tajikistan, in a region where a significant
negative overall trend was observed (Fig. 3.14). The overall FSC trend for the
grid cell was —1.4 % per year, which is fairly high considering this leads to a
decrease of —25 % for the whole time period from 2001 to 2018. The moving
average of the trend analysis reveals that this strong trend was caused by high
snow conditions in the snow seasons 2003/04 to 2006/07 in combination with
low snow conditions from 2012/13 to 2017/18. Also noteworthy is the spiking
character of the cells’ daily FSC time series. In the daily FSC time series it is
apparent that changes in FSC occurred rapidly (Fig. 3.16). The cell FSC appears
to have peaked after snowfall events with values rapidly raising close to 100 %.
Afterwards, FSC values either stayed high or plummeted. In general, snow cover
changes happened therefore very swiftly in this grid cell.

Trend (mean). The high snow conditions in the years 2003 to 2006 can be

seen in all seasons except for summer. In winter, the trend was very significant
and the decisive factor for the overall significance of the trend. The results of the
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Figure 3.16: Trend analysis of the daily FSC from 2001 to 2018 for the grid cell 833289.
The black graph at the top illustrates the cells’ original FSC time series. This time series was
then decomposed into a seasonal component and a trend component (both blue) as well as a
remainder component (red). Both, the decomposition with a linear trend (strong blue line) and
the decomposition with a moving average (weak blue line), are indicated. The equation next to
the trend graphs belongs to the linear trend and refers to annual time steps. The displayed
remainder component represents the residuals of the linear model.

trend analysis of summer indicate that in summer there was no trend detected,
because the grid cell typically had no snow during summer.

The results of the trend analysis of the mean FSC of grid cell 833289 confirm
the observations from the trend analysis of the cell’s daily FSC: The strong
negative trend was primarily caused by the years 2003 to 2006, which had high
mean FSC values, and the years 2013 to 2018, which had a very low mean FSC
values (Fig. 3.17). Autocorrelation for the mean FSC was not significant, and
thus the trend significance was assessed. The trend of the mean annual FSC of
grid cell 833289 was very significant: both ANOVA (0.003) and MK (0.005) yielded
p-values below 0.01.

Results of the grid cell’s seasonal trend analysis brought more insight into the
results of the regional FSC trend analysis (Fig. 3.15d). While there was no trend
in summer, the other seasons all showed a negative trend (Fig. 3.18). In winter,
the trend was very significant (ANOVA: 0.003; MK: 0.0008) with an annual change
rate of —4.2 %, which results in an overall FSC decrease of —71 % mean FSC in
winter. The negative trends in spring (ANOVA: 0.28; MK: 0.79) and fall (ANOVA:
0.16; MK: 0.54) were not significant. Winter was, thus, likely the strongest driver
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for the observed overall trend in southeast Tajikistan. In summer, no trend was
observed, because of the low snow conditions (Fig. 3.18). At least in the close
vicinity of grid cell 833289 there was likely usually no snow during the summer
months.
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Figure 3.17: Trend analysis of the mean annual FSC from 2001 to 2018 for the drid cell 833289.
The black dots mark the cells’ mean FSC of the respective years. The blue line represents the
linear trend. The equation of the linear model is indicated in the upper right corner. The red

bars represent the residuals of the linear model.
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Figure 3.18: Trend analysis of the mean seasonal FSC for the grid cell 833289. The black
dots mark the mean FSC of the respective seasons. The blue line represents the linear trend.
The equation of the linear model is indicated in the upper right corner.
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3.3.2 Snow cover duration (SCD)

a. Overall results

Results of the SCD trend analysis for the entire study area were very similar to
the results of the mean FSC. The annual trend in SCD was negative, but not
significant. Trends in the different seasons were not significant either, except for
winter, which showed a weakly significant negative trend.

The SCD results were very similar to the mean FSC results. Differences
between the overall SCD and mean FSC trend maps were only marginal. The
respective figures were therefore only appended to this thesis (Fig. A.4, Fig. A.5).

The annual trend of the SCD of the entire study area was —0.66 days per
year. The trend was not significant (ANOVA: 0.30; MK: 0.50). The trends of
the different seasons were all negative (spring: —0.03 d/y; summer: —0.05 d/y;
fall: —0.17 d/y; winter: —0.57 d/y) (Fig. A.5). While spring (ANOVA: 0.90;
MK: 0.88), summer (ANOVA: 0.82; MK: 0.60) and fall (ANOVA: 0.56; MK: 0.65)
were all not significant, the trend in winter (ANOVA: 0.05; MK: 0.06) was weakly
significant.

b. Regional results

Overall mean. The regional results of the mean SCD maps of the study area
strongly reflect the mean FSC results. Differences between the annual and seasonal
mean SCD patterns and the mean FSC patterns were mainly marginal.

Similar to the overall changes, also the regional results for the overall mean
SCD of the study area strongly resemble the mean FSC result (Fig. 3.19). The
respective figures for the different seasons can be found in the appendix (Fig.
A.6). Results indicate, that the Western Pamirs were generally longer covered
with snow than the Eastern Pamirs (Fig. 3.19). In addition, like in for the mean
FSC also altitude differences are clearly reflected in the mean SCD (Fig. 3.19).
Seasonal results were also more or less equivalent (Fig. A.6). Differences between
the mean FSC and the SCD can only be seen in detail. There are, for instance,
some differences in the Alai valley, the northeastern part of the study area in
China or the eastern part of Tajikistan (Fig. 3.19).
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Figure 3.19: Map of the overall mean SCD in the study area. The SCD is displayed in colors
from black to white. Areas that were left out of the analysis are colored red. State borders and
a selection of cities are indicated in blue.

Trend. Similar to the previous results also the regional trend results strongly
reflect the respective mean FSC results. The trend maps show a significant
negative trend in SCD in southeast Tajikistan. In spring and fall the majority of
the trends was not significant, although substantial trends are visible. In summer,
there was no trend in the vast majority of the study area. Contrary, in winter
there were strong negative trends, especially in the eastern part of the study area.

Only the trend map for the annual SCD is shown in figure 3.20. The trend
results for the seasonal SCD analysis can be found in the appendix (Fig. A.7,
Tab. A.1). While the general pattern strongly reflects the annual mean FSC
trend map’s pattern, the different classes also visualize smaller trends that were
not considered substantial in the classification of the mean FSC trend (Fig. 3.20).
This resulted in larger areas that indicate considerable trends with a color.

This allows for one noteworthy observation in the Western Pamirs: in spring,
negative trends occurred mainly along the valleys as described previously for the
mean FSC results (Fig. A.7a). In summer, negative trends “moved up” in altitude
and are therefore more or less exclusively on mountain ridges, where there is still
snow present during summer (Fig. A.7b).
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Figure 3.20: Map of the annual SCD trend from 2001 to 2018 in the study area. Areas that
were left out of the analysis are colored gray. The annual change rate is indicated by the slope
of the linear trend in colors from blue (positive) to red (negative). White areas were regarded
as having no substantial trend. Areas with a significant trend of p < 0.05 (based on ANOVA),
were marked with a black dot pattern. State borders and a selection of cities are indicated in
blue. The individual cell 833289, which was further inspected, is marked with a black cross.

c. Cell results

SCD results of the grid cell 833289 were not included since they were almost
identical to the mean FSC results. Thus, indicating once more that the mean
FSC and SCD in the region were strongly related.
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3.4 Summary

The brief analysis of cloud cover patterns show that cloud cover in the study area
was very high: on average a cell was covered with clouds nearly half of the time.
Furthermore, patterns in CCD clearly reflect altitude differences.

The results of the validation demonstrate that the gap filled MODIS images
mapped the general distribution of snow fairly well. Nonetheless, considerable
differences were still present on both validation days. While the accuracy of the
applied MODIS data set was high on the 11th of March 2009, larger areas with
considerable differences were present on the 25th of April 2008. Furthermore,
results indicate that the gap filled MODIS data set considerably underestimated
low NDSI values, and slightly overestimated high NDSI values.

Results of the snow cover analysis demonstrate that both the SCE and the
SCD have generally decreased in the study area from 2001 to 2018. Results
of the SCE and SCD analysis were very similar, and mostly even equivalent:
differences between the mean FSC and the SCD could only be seen in detail
and were mostly marginal. In the subsequent sections, SCE and SCD are, thus,
collectively referred to by the acronym SC (snow cover) to enhance readability.
It is important to note that the acronym SC does only refer to SCE and SCD
and does not include other snow metrics.

Changes in SC over the past 18 years depended on the region and season
under consideration. The overall change of the entire study area was negative, but
not significant. Seasonal trends of the entire study area were also all negative, but
not significant except for winter, which was weakly significant. Changes within
the study area were mostly negative. Over 80 % of the grid cells (~ 80 % of the
study area) showed a negative trend in FSC, and fairly large areas, especially in
the Eastern Pamirs, showed significant negative trends. In contrast, areas with a
significant positive trend were marginal across the Pamirs. As indicated by the
results of the entire study area, negative trends within the study area were also
dominant in all seasons, and by far strongest in winter, where large areas showed
significant negative trends.
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4 Discussion

4.1 Validation

4.1.1 Accuracy of MOD10A1

The validation results demonstrate that the applied MODIS snow cover product
mapped the general distribution of snow reasonably well. However, especially on
the 25th of April 2008 considerable differences between MODIS and Landsat were
still present. Furthermore, on both days the respective overall accuracies were
fairly low with 25 % in 2008 and 65 % in 20009.

While the overall accuracies do represent the agreement between MODIS and
Landsat, the actual numbers have to be treated with care. To be able to assess
the accuracy with a confusion matrix, the cardinal scaled NDSI values had to
be transferred to an ordinal scale. This was done by simply assigning values to
different classes that represent certain NDSI ranges. The overall accuracy can, thus,
be altered by applying a different classification scheme with a different number of
classes or a different range for individual classes. Furthermore, the overall accuracy
only yields information about how many of the cells were correctly classified. In
contrast, it does not include information about how severe misclassifications were.
Hence, the actual value of the overall accuracy is only limited meaningful in this
study. Nonetheless, with the applied classification scheme, the values do still give
an idea of how good the performance of the MODIS snow cover product was.

Although the MODIS snow cover product can map snow reasonably well in
mountainous terrain, the accuracy is still affected (Crawford, 2015; Hall and
Riggs, 2007). Complex atmospheric and illumination conditions can, for instance,
introduce considerable differences between images (Crawford, 2015).

In this study, cloud contaminated cells were completely excluded from the
validation, so the applied gap filling did not influence the validation results. The
main reason for the in part strong deviations between MODIS and Landsat is the
observed over-/underestimation of high /low NDSI values in the MODIS data set.
In particular the underestimation of low NDSI values did considerably contribute
to the very low overall accuracy in spring 2008. Another factor that could affect
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validation results is a difference in the recording time of the satellite images on
the respective validation dates. The time of recording of MODIS and Landsat can
potentially differ by approximately 30-45 min, where changes in NDSI are quite
possible in spring (Crawford, 2015). Such short term changes in NDSI could, for
instance, be caused by changes in atmospheric or illumination conditions and
transient snow fall (Crawford, 2015). Nonetheless, transient snow fall, which has
the potential to introduce major disagreement between images, is unlikely to
have happened, since days with comparatively low cloud cover had been selected
and precipitation in the validation area is generally low. Other factors that cause
differences are resampling errors and noise in the data retrival, which can be
amplified to extreme NDSI values (Crawford, 2015; Lunetta et al., 1991; Slater,
1985).

In summary, the low overall accuracies are only limited meaningful and should
not be overstated. The accuracy should rather be evaluated based on the overall
results of the validation, which indicate a reasonable accuracy. While the retrival
of snow in mountain areas is complex and various factors can lead to differences
between MODIS and Landsat, the observed differences are likely predominantly
caused by the over-/underestimation of high /low NDSI values.

4.1.2 Over- & underestimation of NDSI values

The validation results indicate, that the applied MODIS snow cover product
substantially underestimated low NDSI values, and also slightly overestimated
high NDSI values.

Both, the over- and underestimation of snow in certain conditions, are known
problems in MODIS (Crawford, 2015; Hall and Riggs, 2007). MODIS overestimates
the FSC in mountain areas, and partly fails to detect snow in conditions with
sparse snow coverage (Crawford, 2015; Hall and Riggs, 2007).

The underestimation of low NDSI values was most prominent on the validation
day in spring 2008. The 25th of April 2008 was a day with only low snow cover in
the validation area. This is illustrated by the large number of cells that belonged
to class 1 (0 < NDsSI < 0.2), which represents snow cover of up to 28 %. On
this day MODIS failed to detect low NDSI values in many cases. This substantial
underestimation of NDSI values on the 25th of April 2008 led to the considerable
performance difference of MODIS on the two validation dates. The detection
issues in conditions with sparse snow are likely a result of MODIS’s comparatively
low spatial resolution, that leads to strongly mixed cell signals. In addition,
snow-cloud confusion is also often associated with such conditions in MODIS (Hall
and Riggs, 2007).

The overestimation of high NDSI values was most prominent on the second
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validation day in spring 2009. In contrast to the first validation day, the 11th of
March 2009 was a day with high snow cover in the validation area. On this day,
the majority of cells belonged to class 4 (0.6 < NDsI < 0.8), which represented
snow cover between 86 and 100 %. While MODIS generally performed very well, a
slight overestimation of high NDSI values was visible. Crawford (2015) found a
very similar overestimation of high NDSI values in mountainous terrain. In the
study, Crawford (2015) mentions spatial resolution distortion and differences in
solar illumination based on the respective viewing geometry and angle as well
as Lambertian scattering and physiographic snow cover variability as possible
causes.

In conclusion, the accuracy of the applied MODIS data set is likely considerably
lower for conditions with sparse snow cover. Furthermore, a slight systematic
overestimation of high NDsI values, like in the study of Crawford (2015), is also
likely present throughout the analyzed time period. Possible ramifications for the
trend analysis are that negative trends in areas with typically low snow coverage
could be intensified, while positive trends in areas with high snow coverage could
be concealed. In areas with little snow, like the Eastern Pamirs, negative trends
could be intensified, when NDSI values fall within the lower range, where MODIS
showed lower detection rates. Nonetheless, the course of the FSC time series of
cell 833289 does not support this possibility, since FSC values are mostly either 0
or close to 100 % throughout the whole time series. In other words, a substantial
impact on the trend analysis is unlikely.

4.2 Snow Cover Analysis

4.2.1 Decrease of SC (SCE & SCD)

Decline of SC in the Pamirs. SC in the Pamirs has been decreasing from
2001 to 2018. The decreasing trend in snow cover characteristics in the Pamirs,
that has been indicated by previous studies, was, thus, confirmed for the past
two decades. The decline in mean annual SCE from 2001 to 2018 was more
pronounced than Finaev et al. (2016) computed for 1970 to 2008/09, with 3 %
compared to 2.5 %. The negative overall trend in SC was, however, not significant.

Since the negative trend in SC was not significant, it is quite possible that
the observed negative trend is purely coincidental. One problem is that, the
comparatively short time period from 2001 to 2018 and the large study area
make it difficult to reliable detect small trends in the SC dynamics. In addition,
since the previous studies on cryosphere changes in the Pamirs indicated that
there is a spatially differentiated trend, finding a significant overall trend for the
entire study area was unlikely. Nonetheless, the negative trend still illustrates

25



4 Discussion

the direction of the change and the general decrease of SC within the Pamirs.

An assessment of potential causes for the decrease of SC in the Pamirs was
beyond the scope of this study, and can therefore only be discussed in a speculative
manner. The results of Li et al. (2018) show that temperature and precipitation
are likely the main determinants for SC changes in the Tibetan Plateau, including
the Pamirs.

Increasing air temperatures in the Pamirs are a possible reason for the observed
SC decrease, since air temperature is strongly anticorrelated with SCE as has been
shown in multiple studies (Brown and Robinson, 2011; Déry and Brown, 2007;
Karl et al., 1993; Lemke et al., 2007). Having said this, the strongest decrease of
SC was observed in the Eastern Pamirs during winter, where air temperatures
are usually well below the melting point. Small temperature increases in winter
are, thus, unlikely to be the main driver for the observed SC decrease.

Changes in precipitation could be another explanation, especially since pre-
cipitation is typically very important for SC in continental, cold and dry climates
like the Eastern Pamirs (Brown and Mote, 2009). Furthermore, the study from
Li et al. (2018) indicates that precipitation might be the main driver for SC
changes in the Tibetan Plateau. However, the studies from Finaev et al. (2016)
and Yao et al. (2012) both indicate that average precipitation across the Pamirs
has increased. Moreover, the study from Yao et al. (2012) indicates precipitation
increases especially in the Eastern Pamirs and Finaev et al. (2016) found a
continuous increase in winter precipitation. Nonetheless, the study from Finaev
et al. (2016) also indicates that precipitation changes were heterogeneous, with
increases in high mountain areas and decreases in most other areas. Since most of
the areas with a significant negative SC trend were located in comparatively even
terrain and an increase in precipitation in high mountain areas could have been
concealed by a persistent snow cover in these areas, precipitation could quite
possibly be the decisive factor for the observed SC decline in the Pamirs.

Besides temperature and precipitation many other factors like changes in wind
drift, for instance, could also play a role (Sect. 1.2.1). However, these factors are
even more difficult to assess and likely rather important on smaller scales.

Regional differences: SC reductions in the Eastern Pamirs. SC changes
within the Pamirs depended on the region under consideration. While changes in
the Western Pamirs were mostly minor, significant SC reductions were found in
the Eastern Pamirs, especially in southeast Tajikistan. It was, thus, confirmed
that changes in snow cover characteristics are not uniform across the Pamirs.
Magnitudes of the significant trends found in the Eastern Pamirs mostly lie
within the SCE decreases indicated by Li et al. (2018) of 1.5 to 3.62 % per year.
In contrast to Zhou et al. (2017), however, no larger areas with a positive trend
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were found.

Areas with a considerable negative trend seem to be mostly situated in
comparatively even terrain, whereas considerable trends on mountain ridges
appear to be more rare. In addition, areas with a negative trend appear to
be primarily regions with comparatively low SC. Interestingly, in certain areas,
mostly in the Western Pamirs, a raise of the snow line might be visible, since SC
decreases appear to have happened on the hillsides.

These findings further indicate that the observed SC changes in the Pamirs
were driven by a combination of factors, which depended on the specific region.
The decisive factor for the observed SC decrease in the Eastern Pamirs might have
been changes in precipitation. As discussed before, perhaps potential increases of
snowfall on mountains were concealed by anyway high SC characteristics, whereas
a decline in snowfall events in the respective valleys in the Eastern Pamirs might
have been the decisive factor for the observed SC reductions. Hints of a raising
snow line in some areas indicate that temperature changes certainly play a role
for the snow cover dynamics in the Pamirs. However, temperature might not be
the dominant factor for the observed SC decrease from 2001 to 2018.

Seasonal changes: strongest decrease in winter. The strongest decrease
in SC in the Pamirs was observed in winter. During winter 2001 to 2017, the
negative overall trend across the Pamirs was weakly significant. In contrast,
changes during summer were marginal. Furthermore, a shift towards earlier snow
melt in spring was not the main determinant for snow cover changes in the Pamirs
over the past 18 years.

The finding of strong negative trends across the Pamirs in winter, while in
spring almost no significant trends were present, was unexpected. Based on the
results of previous studies a strong decline of SC was expected to be present
in spring: the general decline in SC was found to be especially pronounced in
spring (Derksen and Brown, 2012; Hernandez-Henriquez et al., 2015; Klein et al.,
2016; Peng et al., 2013), and studies on the Pamirs preponderantly found a shift
towards earlier snowmelt in spring (Dietz et al., 2014; Zhou et al., 2013, 2017).
Nonetheless, the strong trend in winter still agrees with the results from Li et al.
(2018), which indicated a strong decrease during December to April. The only
marginal SC changes during summer were to be expected, since during summer
there is simply no snow in most of the study area.

As previously discussed, one reason for the observed seasonal differences could
be, that precipitation might be the main factor determining SC changes in the
Eastern Pamirs. Temperature is usually more important in spring and fall, since
air temperatures in the Pamirs are closer to the melting point then (Brown and
Mote, 2009; Steger et al., 2013). In contrast, precipitation in winter almost
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exclusively happens in form of snowfall events and is thus more important in dry
regions with severe winters like the Eastern Pamirs. In addition, low vegetation
in the desertlike Eastern Pamirs facilitates wind drift of snow, and thus further
increases the dependence of SC persistence on precipitation.

That being said, the weaker trends in spring and fall could also be a result
of a lack of snow in the respective areas. The trend patterns in spring and fall
still partly reflect the trend patterns found in winter. The results of the grid
cell 833289 in the Eastern Pamirs indicate that there just might have been too
little snow compared to winter to allow for the detection of a significant trend
(Fig. 3.18). This suggests that in certain areas the lack of snow in spring and fall
contributed to the fact that the strongest SC changes were found in winter.

The discrepancy to the results of previous studies that indicate a shift towards
earlier snow melt in the Pamirs could be a result of the different time period
that was examined. Zhou et al. (2013, 2017) analyzed snow cover from 1986 to
2008 and Dietz et al. (2014) analyzed the time period from 1986 to 2014. Also
important to consider is, that the snow cover melt date was not directly examined,
but rather the change in spring SCD. While changes in spring SCD are closely
liked to shifts in the snow cover melt date, a potential shift is still more difficult
to detect compared to a direct assessment.

4.2.2 Similarity of SCE and SCD

The SCE and SCD results were extremely similar: SCD results were more or less
equivalent to the mean FSC results.

In general, similar results for the two snow metrics were expected, since the
SCD and mean SCE both yield information about the amount of snow in the
respective area. Furthermore, in previous research SCE changes were found to be
closely linked to changes in the duration of the snow season (Brown and Mote,
2009). Nonetheless, it was unexpected that the results with respect to SCD and
SCE were basically equivalent.

By comparing both metrics, it was hoped, that areas with low (high) mean
FSC and high (low) SCD could be discerned. These areas would have indicated
locations that were covered by a long (short) time with little (much) snow. Since
the Pamirs are a high mountain area with complex terrain and a high potential for
redistribution of snow by strong winds, areas with heterogeneous snow cover that
show such differences in SCD and mean SCE were expected. However, differences
between both metrics were marginal, thus, implying that the mean SCE is not
only linked to the SCD, but can more or less be translated to the SCD. Hence,
the SCD — the number of days where there is a substantial amount of snow cover
of more than 28 % of the area — is more or less exclusively dependent on the

o8



4 Discussion

mean snow covered area in the respective time period.

The results of grid cell 833289 indicate why this was likely the case: the daily
FSC time series showed a rapid on- and offset of snow cover, with FSC values
being either close to 0 or 100 % with almost no transition period in between.
Therefore, nearly every day, on which snow was detected, was also counted as a
snow covered day in the SCD: in cell 833289, 1393 out of 6570 days were covered
with snow, thereby only 171 days out of the 1393 days had FSC values between 0
and 28 %. Furthermore, over 50 % of the snow covered days had values above
88 % FSC, indicating that changing the threshold for the SCD calculation to
0.3 or 0.4 would not have led to substantially different results. Another factor
to consider in this regard is the applied linear gap filling. With a different gap
filling approach, the number of days with a FSC between 0 and 28 % would have
most likely been even lower.

4.2.3 Spiking character of the FSC cell time series

Individual grid cells showed a rapid on- and offset of snow cover, resulting in a
spiking character in their FSC time series (as has been exemplary shown with the
results of cell 833289; Fig. 3.16). The lack of moderate FSC values then led to
the strong similarity between the SCD and mean SCE. As mentioned previously,
this result was not expected.

Besides natural conditions, the over-/underestimation of high/low NDsI values
by MODIS is very likely to have contributed to this. The results of the validation
with Landsat indicate, that low NDSI values were underestimated by the gap filled
MODIS data set, and high NDSI values were slightly overestimated. Both, the
underestimation of low values and the overestimation of high values lead to more
extreme values, and consequently reinforce the spiking character of the grid cell
FSC time series. The underestimation of low NDSI values, in particular, seems to
be an important factor in this regard: since MODIS likely failed to detect many
low NDsSI values, the similarity of the SCD and mean SCE was intensified.

Another factor to consider is the application of the FSC equation. The
calculation of the FSC with equation 2.2 contributes to a spiking character of the
time series compared to the original NDSI time series. By applying equation 2.2
NDSI values greater than 0.7 are all regarded as 100 % FSC. Information about
high NDsI values is, thus, lost and differences within the time series are reduced.
However, although this does lead to an amplification of the spiking character
compared to the NDSI time series, it is still necessary to obtain information about
the FSC, which is considered to be 100 % when a NDSI of 0.7 is detected based
on an empirical relationship with Landsat images (Salomonson and Appel, 2004,
2006).
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4.2.4 Additional findings

Lake Karakul — potential snow-cloud confusion. Although lake Karakul
showed no substantial trend in the snow cover analysis, an interesting development
of the snow cover throughout the seasons was found. While the lake had on
average higher SC values than its surroundings during spring, summer and winter,
it was the other way around in fall.

In spring and winter lake Karakul was typically frozen for more or less the
entire season, and thus clearly visible in the SC overall mean maps. Since lake
Karakul usually did not start freezing before early December, the SC was lower
compared to its surroundings in fall. In summer, however, lake Karakul had,
against expectations, a higher SC than its surroundings, although the actual class
difference was only one class (e.g. mean FSC: 1-10 % compared to 0-1 %). One
reason for this could be, that occasionally the ice layer of lake Karakul had not
yet melted by beginning of June. This was indeed the case for the eastern part of
lake Karakul in a few years, as could be verified in the time lapse video. However,
in the video, another possible explanation could be observed: during summer
there seemed to occur sporadic snow-cloud confusion over lake Karakul, where in
recurring instances suddenly high NDSI values lit up.

This observation demonstrates the particular problem with cloud cover in
optical remote sensing of snow cover. It has to be assumed, that also in other
regions with frequent cloud cover, snow-cloud confusion occurred. Nonetheless,
because of the stochastic recurrence of the phenomenon it is highly unlikely that
it substantially influenced the main results, as can be seen in the mean FSC of
lake Karakul in fall and the validation results.

Lake Karakul — east-west differences. Slight differences in the mean FSC
within lake Karakul indicated that the eastern part of the lake typically froze
earlier and melted later than its western part.

This finding could be verified in the time lapse video. The video also shows
that lake Karakul typically froze between early to late December, and thawed
between early to late May. The likely cause for the disparity in SC is the difference
in depth between the eastern and the western part of the lake. While the eastern
part of the lake is fairly shallow (~ 20 m), the western part is comparatively deep
(up to ~ 242 m) (Molchanov, 1929, quoted in Mischke et al., 2010).

Highly positive trend in China north of Tashkurgan. In the SC trend
maps, classes with very high SC increases were indicated in the respective legends.
These trends occurred in a small area in China north of Tashkurgan around 74.98°
E and 38.76° N. To further investigate these extreme SC increases, individual
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cells in this area had been inspected manually, and additionally the region was
studied in the time lapse video. Both investigations showed that starting in 2012,
days with middle to high FSC values increased drastically.

A natural positive trend of the observed magnitude is highly unlikely. Either
there have been local disturbances that led to a sudden change in snow cover
or measurements in the MODIS snow cover product were not accurate for this
particular region.

A closer examination of the data gaps in the MODIS snow cover product
indicated that inconsistent measurements in this specific region were potentially
the cause. The region is located in an area characterized by a high percentage of
gaps. It is in direct vicinity of an excluded area that had more than 60 % gaps.
Interestingly, although the region is characterized by a high number of gaps, the
area doesn’t lie within a region of particularly high cloud cover (Fig. 3.1). Hence,
a large portion of this region’s gaps were caused by the other MODIS keys “missing
data”, “no decision”, “night”, “detector saturated” and “fill”. This indicates, that
the MODIS sensor might have had difficulties in this particular region and results
for this region are likely not accurate.

Another factor that needs to be considered in this regard is the applied gap
filling with linear interpolation. An unfavorable distribution of the gaps previous
to or after 2012 could theoretically contribute to this discrepancy. Nonetheless,
the gap filling alone is highly unlikely to have introduced this trend.

4.3 Limitations

Validation. Within the scope of this thesis a basic validation of the MODIS snow
cover product was performed. The complex topography and different climatic
conditions within the study area would, however, make a more detailed validation
desirable. The validation results illustrate, that in certain situations, the accuracy
of the applied MODIS data set can be problematic. A more thorough validation
would help to reduce the uncertainty of the snow cover analysis results.

Instead of two days, multiple validation days with differing conditions would
be desirable. For this, days from different seasons with different snow, cloud and
illumination conditions could be selected. Furthermore, validation results could
differ considerably between the different regions within the Pamirs. Therefore,
the validation of a larger spatial extent or ideally the entire study area would be
desirable. In addition, further data sources with a known high accuracy like field
measurements could also be used to improve the reference data.
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Snow cover data. Remote sensing in complex terrain is challenging, and re-
quires high spatial and temporal resolution (WMO, 2011). Similarly to improving
the validation’s reference data, ensuring a high accuracy of the snow data set is
also of central importance. The validation results illustrate, that the accuracy of
the applied gap filled MODIS-Terra snow data set could still be improved.

A more elaborate gap filling method would likely considerably improve the
snow data accuracy. Instead of solely using temporal gap filling, other techniques
like Gafurov and Bardossy (2009) discussed could certainly improve results.
Dong and Menzel (2016) and Gao et al. (2010) illustrated that especially the
integration of other data sources like field measurements or microwave sensors
can considerably increase data accuracy. Furthermore, the applied gap filling
should ideally be adapted to respective study area.

Another more simple option would be to use the new MODIS cloud gap filled
data set (MOD10A1F), which was introduced in collection 6 of the MODIS snow
cover products (Hall et al., 2010; Riggs et al., 2016). Although, a specific gap
filling for the study area would be ideal, the cloud free product could still be
valuable. While the product was not yet available through the NSIDC at the time
of this study, it could be used in future research.

A further possibility would be the use of spectral-unmixing instead of the NDSI
for snow detection. While several studies indicate, that the NDsI is sufficient for
snow detection in mountainous terrain (Crawford, 2015; Gascoin et al., 2015; Jain
et al., 2008; Sorman et al., 2007), a spectral-unmixing approach could perhaps
still improve data accuracy in high mountain areas like the Pamirs (Rittger et al.,

2013).

Snow cover analysis. In this study a basic trend analysis was conducted to
examine overall changes in snow cover within the Pamirs. One limitation of
the trend analysis is, that the analyzed time period of 18 years is too short to
reliably assess snow cover changes in some areas. The results illustrate that the
interannual variability of snow cover in the Pamirs can be quite large, while
overall changes in many regions were only slight. The analysis of a longer time
period could help to detect smaller changes within the study area. This would be
particularly important for studies researching climate change within the Pamirs,
since then typically 30 years are needed for reliable statements (WMO, 2019).

Extending the time series in a meaningful way is, however, only possible by
making trade-offs. One option would be the integration of the AVHRR data set
like in the study from Dietz et al. (2014). However, in this case the integration
comes with a considerable loss of spatial resolution, which can be problematic in
the Pamirs.
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Other limitations. To visualize results, maps with geographic coordinates
have been used. Geographic coordinates help to improve readability as compared
to the distorted shape of the study area in the sinusoidal projection. However,
geographical coordinates have the disadvantage, that areas are distorted. It
should therefore be kept in mind, that area sizes in the maps can be mislead-
ing. Nonetheless, area distortion in the mid-latitudes is still within acceptable
dimensions.

4.4 Implications for future research.

Results demonstrate, that SC changes particularly occurred in the Eastern Pamirs.
As a next step, it would be important to assess the cause of the observed snow
cover changes to be able to better estimate future changes within the Pamirs.

As indicated by the results of Li et al. (2018), future studies of the snow cover
changes in the Pamirs should focus on temperature and precipitation as the main
factors for snow cover changes. Furthermore, a long-term analysis that compares
changes in snow cover, temperature and precipitation would allow for a more
reliable assessment.

For a more complete assessment of the snow cover changes within the Pamirs,
the additional analysis of the SWE would be important. The results of Brown
and Mote (2009) indicate that in drier climates like the Eastern Pamirs, decreases
in SCD are paired with increases in SWE maximum. The results of this thesis
and other studies support that such a mixed change occurred in the Pamirs. The
SCD in the Pamirs has decreased. At the same time average precipitation in the
Eastern Pamirs has increased (Finaev et al., 2016; Yao et al., 2012), although
several indicators point to a decrease in precipitation as the plausible reason
for the observed SC decline. An increase in SWE in certain areas could partly
explain this discrepancy. Snow cover changes in high altitudes, where snow cover
is high throughout the year, should therefore additionally be assessed with the
SWE.

In addition, further improvement of the base snow data in complex terrain is
of central importance to minimize uncertainty in the results. Besides addressing
the before mentioned limitations, the integration of additional data sources could
greatly improve the accuracy. One meaningful approach to address shortcom-
ings of individual remote sensing sensors is the combination of multiple sensors
as suggested by Crawford (2015). Another promising approach would be the
combination of remote sensing observations with field measurements and hydro-
logical models like Dong (2018) suggested. In this way advantages of different
measurement techniques could be combined.
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5 Conclusion

A detailed analysis of snow cover changes in the Pamirs was conducted to better
resolve small-scale differences within the region. The daily MODIS snow cover
product was used to assess snow cover changes over the past 18 years.

The validation of MODIS with Landsat 5 (TM) demonstrated that the daily
MODIS snow cover product mapped snow cover in the Pamirs with reasonable
accuracy. Nonetheless, MODIS slightly overestimated high NDsI values and consid-
erably underestimated low NDSI values particularly in conditions with sparse snow
cover. A high level of accuracy of the underlying data is of central importance
to reduce uncertainty in the study results. To further increase the accuracy,
a combination of multiple sensors as suggested by Crawford (2015) would be
a possibility. A promising approach to better address shortcomings of remote
sensing data would be the combination of remote sensing observations with field
measurements and hydrological models like Dong (2018) suggested.

Results of the snow cover analysis demonstrate that the decline of snow
covered area in the Pamirs has continued in the 21st century. Results indicate,
that snow cover has primarily decreased in the Eastern Pamirs during winter.
The study, thus, confirmed that snow cover changes within the Pamirs are not
uniform. Interestingly, the shift towards an earlier snow melt in the Pamirs,
which has been indicated by previous studies, was not the main factor for the
observed snow cover changes. Although the snow cover duration in spring has
generally decreased across the Pamirs, negative trends in winter were decisive for
the overall trend. Therefore, local communities in the Eastern Pamirs seem to
face reductions in winter snow cover rather than a shift of the snow season.

The results of this study helped to better resolve small-scale changes of snow
cover in the Pamirs. As a next step, future research needs to assess the drivers for
the observed changes. Li et al. (2018) showed that temperature and precipitation
are likely the main factors for snow cover changes in the Tibetan Plateau. Results
of this thesis indicate that reductions in winter snowfall would be a plausible
explanation for the observed snow cover reductions in the Eastern Pamirs. The
additional analysis of the snow water equivalent could thereby help to better
assess the influence of precipitation on the observed changes.
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A3.2 Validation
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Figure A.1: MODIS NDsI of the entire study area on the 25th of April 2008.
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MODIS NDSI of the entire study area on the 11th of March 2009.

A3.3 Snow Cover Analysis
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Figure A.3: Maps for the mean FSC of the different seasons in the study area. Areas that
were left out of the analysis are colored red.
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Figure A.4: Trend analysis of the annual SCD for the entire study area from 2001 to 2018.
The black dots mark the SCD of the respective years. The blue line represents the linear trend.
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the residuals of the linear model.
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Figure A.5: Trend analysis of the seasonal SCD for the entire study area. The black dots
mark the SCD of the respective seasons. The blue line represents the linear trend. The equation
of the linear model is indicated in the upper right corner. The red bars represent the residuals
of the linear model.
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Figure A.7: Map of the seasonal SCD trend in the study area. Areas that were left out of
the analysis are colored gray. The annual change rate is indicated by the slope of the linear
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substantial trend. Areas with a significant trend of p < 0.05 (based on ANOVA), were marked
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Table A.1: Grid cell distributions of the different trend classes for the annual and seasonal
SCD trend maps. In the rows, the proportion of grid cells, which belong to the respective class
is listed.

Annual trend Seasonal trend

Class [a/y] Overall (% Class [a/y] Spring (%] Summer [%] Fall (5] Winter [%]
+5.0 = 426 0.02 +3.0 = +7.5 0.01 0.00 0.00 0.01
+3.0 = +5.0 0.02 +2.0 = +3.0 0.01 0.01 0.01 0.01
+2.0 — +3.0 0.06 +1.0 - +2.0 0.33 0.03 0.14 0.10
+1.0 —» +2.0 1.38 +0.6 - +1.0 2.07 0.29 1.69 0.49
4+0.6 — +1.0 2.98 +0.3 — 4+0.6 10.51 2.23 7.30 0.91
—0.6 — +0.6 54.24 —-0.3 — +0.3 69.24 89.87 57.87 54.95
-1.0— —-0.6 14.47 —-0.6 — —0.3 11.06 6.19 19.03 9.63
-2.0— —1.0 17.10 -1.0 - —-0.6 5.07 1.26 10.81 9.67
-3.0—> =20 6.24 —-2.0— -1.0 1.69 0.11 3.16 16.33
-5.0 — =3.0 3.11 -3.0— -2.0 0.02 0.01 0.00 6.70
—26 — —5.0 0.38 —-7.5— =3.0 0.00 0.00 0.00 1.19
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